Download Free Biomembranomics Book in PDF and EPUB Free Download. You can read online Biomembranomics and write the review.

The membrane is an intricately structured entity that performs numerous vital biological functions, including materials transport, signal transduction, energy transfer, and enzymatic reactions. Abnormal expression and distribution of certain membrane proteins are even associated with genetic disorders, neurodegenerative diseases, and malignant tumors. Despite the widely acknowledged significance of membranes, comprehensive and systematic research on membranes akin to genomics, proteomics, and metabolomics is still lacking. Furthermore, the broad concept of biomembranes is not confined to the plasma membrane alone; it also includes organelle membranes and membranes of endocytosis or exocytosis vesicles, which are also derived from the biomembrane system. This book introduces the concept of "omics" to membranes and proposes the term ‘biomembranomics.’ It compiles the latest advancements in structural analysis techniques for biomembranes, including single-molecule manipulation techniques, single-molecule fluorescence techniques, super-resolution fluorescence imaging, cryo-electron microscopy, mass spectrometry, molecular dynamics simulation, and hyphenated instrumental techniques. The book presents both classic and cutting-edge protocols in text and illustrative forms, serving as a valuable and applicable reference material. It provides a profound understanding of biomembrane organization at single-molecule level, paving new avenues for unveiling the relationship between membrane structure and function. Therefore, this book is essential reading for researchers across all related fields.
This book is a comprehensive compilation of modern and cutting-edge chromatographic techniques written by pharmaceutical industry experts, academics, and vendors in the field. This book is an inclusive guide to developing all chromatographic methods (such as liquid chromatography and gas chromatography). It covers modern techniques for developing methods using chromatographic development software, requirements for validations, discussion on orthogonality, and how to transfer methods from HPLC to UHPLC. The text introduces some newer techniques that are heavily employed by chemists analyzing proteins and RNAi, as well as novel techniques such as counter current chromatography. This book is valuable for both the novice starting out in undergraduate labs and those who are new to the pharmaceutical industry and is a useful reference for seasoned analysts.
Biophysics is a new way of looking at living matter. It uses quantitative experimental and theoretical methods to open a new window for studying and understanding life processes. This textbook gives compact introductions to the basics of the field, including molecular cell biology and statistical physics. It then presents in-depth discussions of more advanced biophysics subjects, progressing to state-of-the-art experiments and their theoretical interpretations. The book is unique by offering a general introduction to biophysics, yet at the same time restricting itself to processes that occur inside the cell nucleus and that involve biopolymers (DNA, RNA, and proteins). This allows for an accessible read for beginners and a springboard for specialists who wish to continue their study in more detail.
Detection canines have been utilized throughout the world for over a century, and while numerous attempts have been made to replicate the canine’s ability to detect substances by mechanical means, none has been as successful. The olfactory system is a highly intricate and sophisticated design for chemical sensing, and the olfactory capacity of many animals, including canines, is considered unmatched by machine due to not only their great sensitivity and superior selectivity but also their trainability and mobility. These unique features have led to the use of such animals as "whole-animal" biosensors. Amplifying the benefits and diminishing the limitations of detection canines' interdisciplinary research is crucial to understanding canine olfaction and detection and enhancing this powerful and complex detector. The past 50 years have produced vast advancements in animal behavior/training technology to develop canines into more proficient and reliable sensors, while scientific research has provided tremendous support to help practitioners better understand how to utilize this powerful sensor. This book assembles a diverse group of authors with expertise in a variety of fields relating to detection canines and the chemical sensing industry, including both research and operational perspectives on detection canines. It illustrates how science enhances our understanding of how canines are employed for solving some of the world’s leading detection challenges.
The first edition of this book covered the basic treatment of the enzyme reaction using the overall reaction kinetics and stopped-flow method, the general properties of protein and cofactors, the control of enzyme reaction, and the preparation of enzyme protein. These topics are the basis of enzyme research and thus suitable for the beginner in the field. The second edition presents the cofactors produced via the post-translational modification of the enzyme’s active site. These cofactors expand the function of enzymes and open a new research field. The carbonyl reagent phenylhydrazine and related compounds have been useful in finding some of the newly discovered cofactors and thus have been discussed in this edition. The topic of the control of enzyme activity through the channel of substrates and products in polyfunctional enzymes has also been expanded in this book.
Analytical chemists in the pharmaceutical industry are always looking for more-efficient techniques to meet the analytical challenges of today's pharmaceutical industry. One technique that has made steady advances in pharmaceutical analysis is supercritical fluid chromatography (SFC). SFC is meeting the chromatography needs of the industry by provi
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins in membrane organization, the book examines how lipids and membrane compartmentalization can regulate protein function and signal transduction. It then focuses on recent advances in imaging techniques and tools that foster further advances in our understanding of signaling nanoplatforms. The coverage includes several diffraction-limited imaging techniques that allow for measurements of protein distribution/clustering and membrane curvature in living cells, new fluorescent proteins, novel Laurdan analyses, and the toolbox of labeling possibilities with organic dyes. Since superresolution optical techniques have been crucial to advancing our understanding of cellular structure and protein behavior, the book concludes with a discussion of technologies that are enabling the visualization of lipids, proteins, and other molecular components at unprecedented spatiotemporal resolution. It also explains the ins and outs of the rapidly developing high- or superresolution microscopy field, including new methods and data analysis tools that exclusively pertain to these techniques. This integration of membrane biology and advanced imaging techniques emphasizes the interdisciplinary nature of this exciting field. The array of contributions from leading world experts makes this book a valuable tool for the visualization of signaling nanoplatforms by means of cutting-edge optical microscopy tools.
This comprehensive book presents a modern concept in biophysics based on recently published research. It highlights various aspects of the biophysical fundamentals and techniques that are currently used to study different physical properties of biomolecules, and relates the biological phenomenon with the underlying physical concepts. The content is divided into nine chapters summarizing the structural details of proteins, including recently discovered novel folds, higher order structures of nucleic acids, as well as lipids and the physical forces governing the macromolecular interactions which are essential for the various biological processes. It also provides insights into the recent advances in biophysical techniques including Hydrogen Deuterium Exchange with Mass Spectrometry (HDX-MS), Small angle X-ray scattering (SAXS) and Cryo Electron Microscopy (cryo EM), supplemented with interesting experimental data. It is a valuable reference resource for anyone with a desire to gain a better understanding of the fundamentals of biophysical concepts and techniques of important biomolecules.