Download Free Biomedical Research Developments For Improved Healthcare Book in PDF and EPUB Free Download. You can read online Biomedical Research Developments For Improved Healthcare and write the review.

In the realm of health care, privacy protections are needed to preserve patients' dignity and prevent possible harms. Ten years ago, to address these concerns as well as set guidelines for ethical health research, Congress called for a set of federal standards now known as the HIPAA Privacy Rule. In its 2009 report, Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, the Institute of Medicine's Committee on Health Research and the Privacy of Health Information concludes that the HIPAA Privacy Rule does not protect privacy as well as it should, and that it impedes important health research.
Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.
The very rapid pace of advances in biomedical research promises us a wide range of new drugs, medical devices, and clinical procedures. The extent to which these discoveries will benefit the public, however, depends in large part on the methods we choose for developing and testing them. Modern Methods of Clinical Investigation focuses on strategies for clinical evaluation and their role in uncovering the actual benefits and risks of medical innovation. Essays explore differences in our current systems for evaluating drugs, medical devices, and clinical procedures; health insurance databases as a tool for assessing treatment outcomes; the role of the medical profession, the Food and Drug Administration, and industry in stimulating the use of evaluative methods; and more. This book will be of special interest to policymakers, regulators, executives in the medical industry, clinical researchers, and physicians.
This report is the twelfth assessment of the National Institutes of Health National Research Service Awards program. The research training needs of the country in basic biomedical, clinical, and behavioral and social sciences are considered. Also included are the training needs of oral health, nursing, and health services research. The report has been broadly constructed to take into account the rapidly evolving national and international health care needs. The past and present are analyzed, and predictions with regard to future needs are presented.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
To explore the role of the National Institutes of Health (NIH) in innovative drug development and its impact on patient access, the Board on Health Care Services and the Board on Health Sciences Policy of the National Academies jointly hosted a public workshop on July 24â€"25, 2019, in Washington, DC. Workshop speakers and participants discussed the ways in which federal investments in biomedical research are translated into innovative therapies and considered approaches to ensure that the public has affordable access to the resulting new drugs. This publication summarizes the presentations and discussions from the workshop.
A chasm grows between the currently established knowledge and the rapidly evolving landscape of healthcare. As the field of biomedical research hurtles forward with groundbreaking discoveries and transformative technologies, academic scholars find themselves grappling with a significant dilemma. There exists a disconnect between traditional educational resources and the need to keep pace with the latest innovations that are reshaping medicine, diagnosis, and treatment. This widening gap inhibits scholars from adequately preparing their students and hampers their ability to engage in relevant, cutting-edge research, ultimately impeding the advancement of healthcare as a whole. Biomedical Research Developments for Improved Healthcare serves as the ultimate solution to this academic challenge. This book offers a compelling bridge between the realm of academic theory and the dynamic world of practical, real-world biomedical research. Its primary objective is to equip scholars with the knowledge, insights, and materials needed to inspire the next generation of healthcare professionals. By presenting a comprehensive overview of the most recent and groundbreaking advancements in biomedical research, the book enables scholars to transcend the limitations of traditional academia and empower their students with up-to-date, practical knowledge.
Motivated by the explosion of molecular data on humans-particularly data associated with individual patients-and the sense that there are large, as-yet-untapped opportunities to use this data to improve health outcomes, Toward Precision Medicine explores the feasibility and need for "a new taxonomy of human disease based on molecular biology" and develops a potential framework for creating one. The book says that a new data network that integrates emerging research on the molecular makeup of diseases with clinical data on individual patients could drive the development of a more accurate classification of diseases and ultimately enhance diagnosis and treatment. The "new taxonomy" that emerges would define diseases by their underlying molecular causes and other factors in addition to their traditional physical signs and symptoms. The book adds that the new data network could also improve biomedical research by enabling scientists to access patients' information during treatment while still protecting their rights. This would allow the marriage of molecular research and clinical data at the point of care, as opposed to research information continuing to reside primarily in academia. Toward Precision Medicine notes that moving toward individualized medicine requires that researchers and health care providers have access to very large sets of health- and disease-related data linked to individual patients. These data are also critical for developing the information commons, the knowledge network of disease, and ultimately the new taxonomy.
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.