Download Free Biomedical Nanostructures Book in PDF and EPUB Free Download. You can read online Biomedical Nanostructures and write the review.

Learn to Use Nanoscale Materials to Design Novel Biomedical Devices and Applications Discover how to take full advantage of nanoscale materials in the design and fabrication of leading-edge biomedical devices. The authors introduce you to a variety of possible clinical applications such as drug delivery, diagnostics, and cancer therapy. In addition, the authors explore the interface between micron and nanoscale materials for the development of applications such as tissue engineering. Finally, they examine the mechanisms of cell interactions with material surfaces through the use of nanotechnology-based material processing and characterization methods. The text's three sections highlight its interdisciplinary approach: * Part One: Nanostructure Fabrication * Part Two: Bio-Nano Interfaces * Part Three: Clinical Applications of Nanostructures Among the key topics covered are nanotechnology in tissue regeneration; biomolecular engineering; receptor-ligand interactions; cell-biomaterial interactions; nanomaterials in diagnostics, drug delivery, and cancer therapy; and nano- and micron-level engineering and fabrication. Throughout the text, clear examples guide you through the chemistry and the processing involved in designing and developing nanoscale materials for biomedical devices. Each chapter begins with an introduction and ends with a conclusion highlighting the key points. In addition, references at the end of the chapter help you expand your research on any individual topic. In summary, this book helps biomedical researchers and engineers understand the physical phenomena that occur at the nanoscale in order to design novel cell-based constructs for a wide range of applications.
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Carbon nanostructures, namely fullerenes, single and multiwall carbon nanotubes, graphene as well as the most recent graphene quantum dots and carbon nanodots, have experienced a tremendous progress along the last two decades in terms of the knowledge acquired on their chemical and physical properties. These insights have enabled their increasing use in biomedical applications, from scaffolds to devices. Edited by renowned experts in the subject, this book collects and delineates the most notable advances within the growing field surrounding carbon nanostructures for biomedical purposes. Exploration ranges from fundamentals around classifications to toxicity, biocompatibility and the immune response. Modified nanocarbon-based materials and emergent classes, such as carbon dots and nanohorns are discussed, with chapters devoted from carriers for drug delivery and inhibitors of emergent viruses infection, to applications across imaging, biosensors, tissue scaffolding and biotechnology. The book will provide a valuable reference resource and will extensively benefit researchers and professionals working across the fields of chemistry, materials science, and biomedical and chemical engineering.
Materials for Biomedical Engineering: Organic Micro- and Nanostructures provides an updated perspective on recent research regarding the use of organic particles in biomedical applications. The different types of organic micro- and nanostructures are discussed, as are innovative applications and new synthesis methods. As biomedical applications of organic micro- and nanostructures are very diverse and their impact on modern and future therapy, diagnosis and prophylaxis of diseases is huge, this book presents a timely resource on the topic. Users will find the latest information on cancer and gene therapy, diagnosis, drug delivery, green synthesis of nano- and microparticles, and much more. - Provides knowledge of the range of organic micro- and nanostructures available, enabling the reader to make optimal materials selection decisions - Presents detailed information on current and proposed applications of the latest biomedical materials - Places a strong emphasis on the characterization, production and use of organic nanoparticles in biomedicine, such as gene therapy, DNA interaction and cancer management
Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.
This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.
Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. - Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products - Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years - Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry
Biological Nanostructures and Applications of Nanostructures in Biology: Electrical, Mechanical, and Optical Properties contains reviews and discussions of contemporary and relevant topics dealing with the interface between the science and technology of nanostructures and the science of biology. Moreover, this book supplements these past groundbreaking discoveries with discussions of promising new avenues of research that reveal the enormous potential of emerging approaches in nanobiotechnology. The topics include: - Biomedical applications of semiconductor quantum dots, - Integrating and tagging biological structures with nanoscale quantum dots, - Applications of carbon nanotubes in bioengineering, - Nanophysical properties of living cells, - Bridging natural nanotubes with fabricated nanotubes, - Bioinspired approaches to building nanoscale devices and systems, - Hairpin formation in polynucleotides. This state-of-the-art survey of key developments in nanotechnology - as they apply to bioengineering and biology - is essential reading for all academics, biomedical engineers, medical physicists, and industry professionals wishing to take advantage of the latest developments and highly-promising discoveries in nanoscience underlying applications in bioengineering and biology.
Two Dimensional Nanostructures for Biomedical Technology: A Bridge between Materials Science and Bioengineering helps researchers to understand the promising aspects of two dimensional nanomaterials. Sections cover the biomedical applications of such nanostructures in terms of their precursors, structures, morphology and size. Further, detailed synthetic methodologies guide the reader towards the efficient generation of two dimensional nanostructures. The book encompasses the vital aspects of two dimensional nanomaterials in context of their utility in biomedical technology, thus presenting a thorough guide for researchers in this area. - Details the latest on the structure, morphology and shape-size accords of two dimensional nanomaterials - Includes synthetic strategies with feasibility for sustainability - Reports on two dimensional nanostructures in biomedical technology, including bio-imaging, biosensing, drug delivery and tissue engineering
Carbon nanostructures, namely fullerenes, single and multiwall carbon nanotubes, graphene as well as the most recent graphene quantum dots and carbon nanodots, have experienced a tremendous progress along the last two decades in terms of the knowledge acquired on their chemical and physical properties. These insights have enabled their increasing use in biomedical applications, from scaffolds to devices. Edited by renowned experts in the subject, this book collects and delineates the most notable advances within the growing field surrounding carbon nanostructures for biomedical purposes. Exploration ranges from fundamentals around classifications to toxicity, biocompatibility and the immune response. Modified nanocarbon-based materials and emergent classes, such as carbon dots and nanohorns are discussed, with chapters devoted from carriers for drug delivery and inhibitors of emergent viruses infection, to applications across imaging, biosensors, tissue scaffolding and biotechnology. The book will provide a valuable reference resource and will extensively benefit researchers and professionals working across the fields of chemistry, materials science, and biomedical and chemical engineering.