Download Free Biomaterials Nanoarchitectonics Book in PDF and EPUB Free Download. You can read online Biomaterials Nanoarchitectonics and write the review.

Biomaterials Nanoarchitectonics, written from the perspectives of authors form NIMS and other researchers worldwide, provides readers with an explanation of the theory and techniques of nanoarchitectonics, exploring its applications in biomedical fields, including regenerative medicine, drug delivery, and diagnostic and treatment systems based on pathogenic mechanisms. The book also explains the use of nanomaterials that enable 'materials therapy', in which the materials themselves elicit a sustainable, curative effect from living tissue. - Authored by the team that coined the term nanoarchitectonics, who explain their approach to the design of smart/functional nanomaterials and their applications in the biomedical arena - Explores how materials designed and produced with nanoarchitectonics methods can be used to enhance the natural regenerative power of the human body - Enables scientists and researchers to gain a deeper understanding of the specific challenges of materials design at the nanoscale
Nanoarchitectonics in Biomedicine describes this new area of nanoscience that has emerged as a major branch of nanoscience. The book brings together recent applications and discusses the advantages and disadvantages of each process, offering international perspectives on the technologies based on these findings. It offers new insights for nanoarchitectonics, starting with the currently used methods of synthesis and characterization of such materials, along with their biomedical applications. Authored by a wide range of international scientists, this volume shows how nanoarchitectonics is being used to create more efficient medical treatment solutions. Users will find this to be an important research resource for those wanting to learn more on the emerging topic of nanoarchitectonics in biomedical science. - Explores how design aspects, smart materials and personalized materials are used in biomedicine today - Offers global perspectives on how nanoarchitectonics is used in different regions - Presents an important research resource for those wanting to learn more on the emerging topic of nanoarchitectonics in biomedical science
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology.
The concept of nanoarchitechtonics was introduced to describe the correct manipulation of nanoscale materials in the creation of nano-devices and applications. Nanoarchitectonics has begun to spread into many fields including nanostructured materials synthesis, supramolecular assembly, nanoscale structural fabrications, materials hybridizations, materials and structures for energy and environmental sciences, device and physical application, and bio- and medical applications. Following on from the 2012 title Manipulation of Nanoscale Materials, Concepts and Design of Materials Nanoarchitectonics covers the introductory features underlying the field, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials. Edited by pioneers of the field, this book will appeal to researchers working in nanoscience, materials science, supramolecular chemistry, physical chemistry and organic chemistry, as well as graduate students in these areas.
This book discusses the latest developments of the synthesis, preparation, characterization, and applications of nano/microstructure-based materials in biomedical and energetic fields. It introduces several popular approaches to fabricating these materials, including template-assisted fabrication, electrospinning of organic/inorganic hybrid materials, biomineralization-mediated self-assembly, etc. The latest results in material evaluation for targeted applications are also presented. In particular, the book highlights the latest advances and future challenges in polymer nanodielectrics for energy storage applications. As such, it offers a valuable reference guide for scholars interested in the synthesis and evaluation of nano/microstructure-based materials, as well as their biomedical and energetic applications. It also provides essential insights for graduate students and scientists pursuing research in the broad fields of composite materials, polymers, organic/inorganic hybrid materials, nano-assembly, etc.
This book is the ultimate assembly of recent research activities on molecular architectonics and nanoarchitectonics by authors who are worldwide experts. The book proposes new ways of creating functional materials at the nano level using the concepts of molecular architectonics and nanoarchitectonics, which are expected to be the next-generation approaches beyond conventional nanotechnology. All the contents are categorized by types of materials, organic materials, biomaterials, and nanomaterials. For that reason, non-specialists including graduate and undergraduate students can start reading the book from any points they would like. Cutting-edge trends in nanotechnology and material sciences are easily visible in the contents of the book, which is highly useful for both students and experimental materials scientists.
A succinct handbook explaining interdisciplinary processing, methods, and applications of bio-based materials This book merges the two most important trends in biomaterials: functionalization and renewable chemistry. It covers a variety of biopolymers and various approaches for the transformation of these biopolymers into functional units. Sample topics covered by the two well-qualified authors include: Fundamental knowledge of biopolymers–natural ones, such as cellulose and other polysaccharides, and synthetic ones, such as polyethylene The origin, classifications, chemical nature, and isolation methods of specific biopolymers The different classical and modern approaches for the transformation of biopolymers into different shapes, ranging from thin films (model surfaces), to nanoparticles, to nanofibers, all the way to 3D scaffolds The morphology, structure, shape, thermal, electrical, and surface properties of biomaterials This all-inclusive reference guide, which covers fundamentals, methods, and applications alike, is a key resource for both students and practicing scientists involved in programs of study or disciplines that intersect with the field of biomaterials.
This book discusses basics of brain diseases and the role of nanobiotechnology in existing treatment options for neurodegenerative disorders. It begins with an overview of brain diseases and the need for novel drug-delivery approaches. It highlights the current route for the intranasal advanced drug-delivery systems for brain diseases. It also discusses innovative categories of drug-delivery systems, including mesoporous silica nanoparticles, polymeric nanocarriers, and lipid-based nanocarriers through multi-responsive DDSs and their implications in brain disorders. Features: Includes an overview of brain diseases and highlights the need for novel drug-delivery approaches Focuses on theoretical aspects of advanced drug-delivery systems for brain diseases including challenges and progress in nose-to-brain delivery Provides an overview of technological approaches and their implications for neurodegenerative disorders, central nervous system (CNS), and brain drug delivery in brain cancer Discusses key advances in the development of polymer nanoparticles for drug delivery to the CNS Reviews the role of herbal medicines and naturally derived polymeric nanoparticle for the treatment of neurodegenerative disorders This book is aimed at graduate students and researchers in biomedical engineering, biotechnology, drug delivery, and neurology.