Download Free Biomaterials In Endodontics Book in PDF and EPUB Free Download. You can read online Biomaterials In Endodontics and write the review.

Biomaterials in Endodontics offers an up-to-date overview of endodontic biomaterials and their applications in regenerative medicine and tissue engineering. This book details the key biomaterials used in clinical endodontics and the benefits and challenges of using these materials, from root canal obturation materials to alloys for endodontic files and hand instruments. Chapters also offer a unique insight into the regenerative applications of endodontic biomaterials, such as the use of stem cells and growth factors for bone regeneration. Biomaterials in Endodontics is a useful resource for researchers working in biomedical engineering, regenerative medicine, and materials science with an interest in dentistry and bone regeneration. This book is also a helpful guide for endodontists, dentists, dental scientists, and clinicians with an interest in biomaterials for endodontics. - Details the latest innovations in materials used for endodontic procedures - Offers a unique insight into regenerative applications of endodontic biomaterials - Appeals to an interdisciplinary readership, combining materials science, regenerative medicine, and biomedical engineering approaches
Advanced Dental Biomaterials is an invaluable reference for researchers and clinicians within the biomedical industry and academia. The book can be used by both an experienced researcher/clinician learning about other biomaterials or applications that may be applicable to their current research or as a guide for a new entrant into the field who needs to gain an understanding of the primary challenges, opportunities, most relevant biomaterials, and key applications in dentistry. - Provides a comprehensive review of the materials science, engineering principles and recent advances in dental biomaterials - Reviews the fundamentals of dental biomaterials and examines advanced materials' applications for tissues regeneration and clinical dentistry - Written by an international collaborative team of materials scientists, biomedical engineers, oral biologists and dental clinicians in order to provide a balanced perspective on the field
Biomaterials for Oral and Dental Tissue Engineering examines the combined impact of materials, advanced techniques and applications of engineered oral tissues. With a strong focus on hard and soft intraoral tissues, the book looks at how biomaterials can be manipulated and engineered to create functional oral tissue for use in restorative dentistry, periodontics, endodontics and prosthodontics. Covering the current knowledge of material production, evaluation, challenges, applications and future trends, this book is a valuable resource for materials scientists and researchers in academia and industry. The first set of chapters reviews a wide range of biomaterial classes for oral tissue engineering. Further topics include material characterization, modification, biocompatibility and biotoxicity. Part Two reviews strategies for biomaterial scaffold design, while chapters in parts three and four review soft and hard tissues. - Connects materials science with restorative dentistry - Focuses on the unique field of intraoral tissues - Highlights long-term biocompatibility and toxicity of biomaterials for engineered oral tissues
Nanobiomaterials in Dentistry: Applications of Nanobiomaterials discusses synthesis methods and novel technologies involving nanostructured bio-active materials with applications in dentistry. This book provides current research results for those working in an applied setting. The advantage of having all this information in one coherent text will be the focused nature of the chapters and the ease of which this information can be accessed. This collection of titles brings together many of the novel applications these materials have in biology and discusses the advantages and disadvantages of each application and the perspectives of the technologies based on these findings. At the moment there is no other comparable book series covering all the subjects approached in this set of titles. - Offers an updated and highly structured reference material for students, researchers, and practitioners working in biomedical, biotechnological, and engineering fields - Serves as a valuable resource of recent scientific progress, along with most known applications of nanomaterials in the biomedical field - Features novel opportunities and ideas for developing or improving technologies in nanomedicine and dentistry
Nanobiomaterials in Clinical Dentistry, Second Edition shows how a variety of nanomaterials are being used to solve problems in clinical dentistry. New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The book's chapters discuss the advantages and challenges of using nanomaterials and include case studies to illustrate how a variety of materials are best used in research and practice. - Contains information from an interdisciplinary, international group of scientists and practitioners in the fields of nanomaterials, dental implants, medical devices and clinical practice - Presents a comprehensive reference on the subject that covers material fabrication and the use of materials for all major diagnostic and therapeutic dental applications--repair, restoration, regeneration, implants and prevention - Complements the editors' previous book on nanotechnology applications for dentistry
This book focuses on hydraulic calcium silicate-based materials available in clinical dentistry, used as pulp capping materials, root canal sealers, root-end fillers, or root repair materials and which offer improved properties and easier clinical application compared with the original mineral trioxide aggregate. The book introduces the current classification of bioceramic materials and explains their characterization and their physicochemical and biological properties. Thereafter, the various clinical applications of these materials are discussed in depth with reference to the evidence base. The coverage includes applications in endodontic treatments and complications, traumatic dental injuries, management of the vital pulp in both dentitions, and regenerative endodontic procedures. Apart from presenting the latest research on hydraulic calcium silicate-based materials, Bioceramic Materials in Clinical Endodontics promotes an essential balance between basic laboratory and clinical research. It will thus be an important reference for materials science specialists, clinical researchers, and clinicians.
This book offers readers a valuable overview of recent advances in biomedical engineering, as applied to the modern dentistry. It begins by studying the biomaterials in dentistry, and materials used intraoperatively during oral and maxillofacial surgery procedures. Next, it considers the subjects in which biomedical engineers can be influential, such as 3-dimensional (3D) imaging, laser and photobiomodulation, surface modification of dental implants, and bioreactors. Hard and soft tissue engineerings in dentistry are discussed, and some specific and essential methods such as 3D-printing are elaborated. Presenting particular clinical functions of regenerative dentistry and tissue engineering in treatment of oral and maxillofacial soft tissues is the subject of a separate chapter. Challenges in the rehabilitation handling of large and localized oral and maxillofacial defects is a severe issue in dentistry, which are considered to understand how bioengineers help with treatment methods in this regard. Recent advances in nanodentistry is discussed followed by a chapter on the applications of stem cell-encapsulated hydrogel in dentistry.Periodontal regeneration is a challenging issue in dentistry, and thus, is going to be considered separately to understand the efforts and achievements of tissue engineers in this matter. Oral mucosa grafting is a practical approach in engineering and treatment of tissues in ophthalmology, which is the subject of another chapter. Microfluidic approaches became more popular in biomedical engineering during the last decade; hence, one chapter focuses on the advanced topic of microfluidics technologies using oral factors as saliva-based studies. Injectable gels in endodontics is a new theme in dentistry that bioengineering skills can advance its development, specifically by producing clinically safe and effective gels with regeneration and antibacterial properties. Engineered products often need to be tested in vivo before being clinical in dentistry; thus, one chapter is dedicated to reviewing applicable animal models in dental research. The last chapter covers the progress on the whole tooth bioengineering as a valuable and ultimate goal of many dental researchers. Offers readers an interdisciplinary approach that relates biomedical engineering and restorative dentistry Discusses recent technological achievements in engineering with applications in dentistry Provides useful tool to dental companies for future product planning, specifically to biomedical engineers engaged in dental research
Approx.688 pagesApprox.688 pages
Stem Cell Biology and Tissue Engineering in Dental Sciences bridges the gap left by many tissue engineering and stem cell biology titles to highlight the significance of translational research in this field in the medical sciences. It compiles basic developmental biology with keen focus on cell and matrix biology, stem cells with relevance to tissue engineering biomaterials including nanotechnology and current applications in various disciplines of dental sciences; viz., periodontology, endodontics, oral & craniofacial surgery, dental implantology, orthodontics & dentofacial orthopedics, organ engineering and transplant medicine. In addition, it covers research ethics, laws and industrial pitfalls that are of particular importance for the future production of tissue constructs. Tissue Engineering is an interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. This ever-emerging area of research applies an understanding of normal tissue physiology to develop novel biomaterial, acellular and cell-based technologies for clinical and non-clinical applications. As evident in numerous medical disciplines, tissue engineering strategies are now being increasingly developed and evaluated as potential routine therapies for oral and craniofacial tissue repair and regeneration. - Diligently covers all the aspects related to stem cell biology and tissue engineering in dental sciences: basic science, research, clinical application and commercialization - Provides detailed descriptions of new, modern technologies, fabrication techniques employed in the fields of stem cells, biomaterials and tissue engineering research including details of latest advances in nanotechnology - Includes a description of stem cell biology with details focused on oral and craniofacial stem cells and their potential research application throughout medicine - Print book is available and black and white, and the ebook is in full color
Bioactive materials, or biomaterials, have the ability to interact biologically with the tissue to which it is inserted, and to stimulate the deposition of mineralized tissue. The calcium phosphate-based ceramics were the first known materials in dentistry to have bioactivity, and currently, these materials are the most used for biomedical purposes, with different morphological characteristics. In dentistry, these materials have achieved immense importance by stimulating the deposition of osseous tissue in injured bone, and by having the ability to remineralize hard tooth tissues (enamel and dentin). Furthermore, repair materials based on aggregated trioxides mineral or on calcium hydroxide are classic biomaterials and widely used in dentistry, mainly in contact with the pulp tissue or periodontal ligament, for repair processes. However, various formulations of these materials appear all the time, in search of the ideal material. In general, bioactive materials have been shown to promote the release of calcium, sodium, silicon and phosphate ions, which are metabolized by the body, having effects such as angiogenesis and antimicrobial action, which can be improved depending on the composition of the material. Pulp tissue is a highly specialized dental tissue and is the subject of intense studies about the response to biomaterials. It is also understood that some systemic alterations in individuals have an influence on the action of bioactive materials during tissue repair processes. Thus, this book will address the use of different bioactive materials in dentistry, considering the performance of these biomaterials in the hard tissues of the tooth, and the response of the dental pulp, as well as the influence of the composition of these materials and of the individual's systemic alterations in bioactivity and in antimicrobial activity. The several in vivo and in vitro tests to evaluate the bioactivity of a biomaterial will also be addressed.