Download Free Biomass To Biofuel Book in PDF and EPUB Free Download. You can read online Biomass To Biofuel and write the review.

This volume focuses on the prospects of the conversion of biomass into biofuels including ethanol, butanol, biogas, biohydrogen, biodiesel, syn-gas and other useful products. Biomass-derived fuels have gained tremendous attention worldwide. However, due to high raw material and processing costs, biofuels produced from lignocelluloses have been found to be more expensive than conventional fuels. Therefore, a concept of biorefining has been introduced, where more than one product or each and every component of biomass may be derived into useful products in a manner of petroleum refinery.
Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition presents a complete overview of the bioenergy value chain, from feedstock to end products. It examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources. Divided into seven parts, bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life-cycle analysis, energy return on invested, integrated sustainability assessments, conversions technologies, biofuels economics, business, and policy. In addition, contributions from leading industry professionals and academics, augmented by related service-learning case studies and quizzes, provide readers with a comprehensive resource that connect theory to real-world implementation.Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition provides engineers, researchers, undergraduate and graduate students, and business professionals in the bioenergy field with valuable, practical information that can be applied to implementing renewable energy projects, choosing among competing feedstocks, technologies, and products. It also serves as a basic resource for civic leaders, economic development professionals, farmers, investors, fleet managers, and reporters interested in an organized introduction to the language, feedstocks, technologies, and products in the biobased renewable energy world. - Includes current and renewed subject matter, project case studies from real world, and topic-specific sections on the impacts of biomass use for energy production from all sorts of biomass feedstocks including organic waste of all kinds - Provides a comprehensive overview and in-depth technical information of all possible bioenergy resources: solid (wood energy, grass energy, waste, and other biomass), liquid (biodiesel, algae biofuel, ethanol, waste to oils, etc.), and gaseous/electric (biogas, syngas, biopower, RNG), and cutting-edge topics such as advanced fuels - Integrates current state of art coverage on feedstocks, cost-effective conversion processes, biofuels economic analysis, environmental policy, and triple bottom line - Features quizzes for each section derived from the implementation of actual hands-on biofuel projects as part of service learning
Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book's comprehensive overview. - Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass - Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion - Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes
Focusing on the key challenges that still impede the realization of the billion-ton renewable fuels vision, this book integrates technological development and business development rationales to highlight the key technological.developments that are necessary to industrialize biofuels on a global scale. Technological issues addressed in this work include fermentation and downstream processing technologies, as compared to current industrial practice and process economics. Business issues that provide the lens through which the technological review is performed span the entire biofuel value chain, from financial mechanisms to fund biotechnology start-ups in the biofuel arena up to large green field manufacturing projects, to raw material farming, collection and transport to the bioconversion plant, manufacturing, product recovery, storage, and transport to the point of sale. Emphasis has been placed throughout the book on providing a global view that takes into account the intrinsic characteristics of various biofuels markets from Brazil, the EU, the US, or Japan, to emerging economies as agricultural development and biofuel development appear undissociably linked.
For the power industry, biomass is just a modern name for the ancient material of plant origin that was converted into energy in the simple technology of burning. This book discusses biomass as a raw material for the production of liquid or gaseous biofuels and valuable chemicals. Such biomass processing should be beneficial from both economic and environmental points of view. Classic technologies of biogas production are still being improved, but they always generate waste that differs in terms of chemical parameters, depending on the feedstock digested. These parameters dictate the manner of their final managing. Various biotechnologies allow the use of the biomass of hydrobionts, such as cyanobacteria as a raw substance for obtaining different products, e.g. hyaluronic acid, biopolymers, fertilizers, or even drugs. Animal fats or algae can be used to produce biodiesel which in turn is used in environmentally friendly urban transport. Even municipal solid waste can be a source of useful biomass. The authors show how its volume and composition can be predicted, by which form of processing it can be converted into valuable products, as well as in which ways its negative environmental impact can be limited.
This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobic digestion. The book highlights innovative bioproduct optimization and molecular genetic techniques, applications of genomics and metabolomics, and the genetic engineering of microalgae strains targeting biocrude production. The latest developments in microalgae harvesting and dewatering technologies, which combine biomass production with electricity generation, are presented, along with detailed techno-economic modeling. This extensive volume was written by respected experts in their fields and is intended for a wide audience of researchers and engineers.
Biofuel and bioenergy produced from biowastes and biomass is a clean energy source which can be produced renewably. The 21 chapters of this book provide state-of-the-art reviews, current research, and technology developments with respect to 1st, 2nd, and 3rd generation biofuels and bioenergy. The book focuses on the biological/ biochemical pathway, as this option has been reported to be the most cost-effective method for biofuel/bioenergy production. The opening chapter covers the overview of the current status of biofuel and bioenergy production. The rest of the chapters are grouped into seven categories; they cover biomethane production, microbial fuel cells, feedstock production, preprocessing, biomass pretreatment, enzyme hydrolysis, and syngas fermentation. Algal processes for biofuel production, biobutanol production, bioreactor systems, and value-added processing of biofuel residues are included. This book addresses life cycle analyses (LCA) of 1st and 2nd generation biofuels (from corn, soybean, jatropha, and cellulosic biomass) and the emerging applications of nanotechnology in biofuel/bioenergy production. The book is organized in such a way that each preceding chapter builds a foundation for the following one. At the end of each chapter, current research trends and further research needs are outlined. This is one of the first books in this emerging field of biofuel/bioenergy that provides in-depth technical information on the broad topics of biofuel and bioenergy with extensive illustrations, case studies, summary tables, and up-to-date references. This book will be valuable to researchers, instructors, senior undergraduate and graduate students, decision-makers, professionals, and others interested in the field of biofuel/bioenergy.
Due to its depletion and the environmental damage it causes, hydrocarbons are being replaced by energy from renewable sources. One such form of energy source is Biomass. Biomass is a renewable raw material generated by living organisms and found in agricultural waste in large quantities. The three main components of biomass are cellulose, hemicellulose and lignin. The first two components are sugar polymers, being cellulosic ethanol a desirable goal for converting those. The truth is that the production of cellulosic ethanol has never passed the pilot unit phase, due to the lack of economic competitiveness. New ways must be found to make this viable. From the latest finding of the biomass structure, new biomass processing pathways are being advanced, constituting new biorefinery models, which will make it possible to obtain cellulosic ethanol concomitant with the production of different bioproducts such as xylitol, oligosaccharides, antioxidants and analogues to carbon fiber, etc. Lipid rich biomass is the source of foods oils. With population growth, the amounts of waste volume will increase. It is important to improve the processes of valorization of these residues, through their conversion into alcoholic esters of fatty acids, which can be used as fuel or in other domestic and industrial applications. This volume reviews advances and innovative applications in this field. It will encourage the use of new works and even unpublished works to use biomass or its components for the production of bioproducts and biofuels.
Biomass to Biofuel Supply Chain Design and Planning under Uncertainty: Concepts and Quantitative Methods explores the design and optimization of biomass-to-biofuel supply chains for commercial-scale implementation of biofuel projects by considering the problems and challenges encountered in real supply chains. By offering a fresh approach and discussing a wide range of quantitative methods, the book enables researchers and practitioners to develop hybrid methods that integrate the advantages and features of two or more methods in one decision-making framework for the efficient optimization of biofuel supply chains, especially for complex supply chain models. Combining supply chain management and modeling techniques in a single volume, the book is beneficial for graduate students who no longer need to consult subject-specific books alongside mathematical modeling textbooks. The book consists of two main parts. The first part describes the key components of biofuel supply chains, including biomass production, harvesting, collection, storage, preprocessing, conversion, transportation, and distribution. It also provides a comprehensive review of the concepts, problems, and opportunities associated with biofuel supply chains, such as types and properties of the feedstocks and fuel products, decision-making levels, sustainability concepts, uncertainty analysis and risk management, as well as integration of biomass supply chain with other supply chains. The second part focuses on modeling and optimization of biomass-to-biofuel supply chains under uncertainty, using different quantitative methods to determine optimal design. Proposes a general multi-level framework for the optimal design and operation of biomass-to-biofuel supply chains through quantitative analysis and modeling, including different biomass and waste biomass feedstock, production pathways, technology options, transportation modes, and final products Explores how modeling and optimization tools can be utilized to address sustainability issues in biofuel supply chains by simultaneously assessing and identifying sustainable solutions Presents several case studies with different regional constraints to evaluate the practical applicability of different optimization methods and compares their performance in real-world situations Includes General Algebraic Modeling System (GAMS) codes for solving biomass supply chain optimization problems discussed in different chapters
The book describes the pretreatment of lignocellulosic biomass for biomass-to-biofuel conversion processes, which is an important step in increasing ethanol production for biofuels. It also highlights the main challenges and suggests possible ways to make these technologies feasible for the biofuel industry. The biological conversion of cellulosic biomass into bioethanol is based on the chemical and biological breakdown of biomass into aqueous sugars, for example using hydrolytic enzymes. The fermentable sugars can then be further processed into ethanol or other advanced biofuels. Pretreatment is required to break down the lignin structure and disrupt the crystalline structure of cellulose so that the acids or enzymes can easily access and hydrolyze the cellulose. Pre-treatment can be the most expensive process in converting biomass to fuel, but there is great potential for improving the efficiency and lowering costs through further research and development. This book is aimed at academics and industrial practitioners who are interested in the higher production of ethanol for biofuels.