Download Free Biomass Energy For Sustainable Development Book in PDF and EPUB Free Download. You can read online Biomass Energy For Sustainable Development and write the review.

Clean Energy for Sustainable Development: Comparisons and Contrasts of New Approaches presents information on the fundamental challenge that the energy sector faces with regard to meeting the ever growing demand for sustainable, efficient, and cleaner energy. The book compares recent developments in the field of energy technology, clean and low emission energy, and energy efficiency and environmental sustainability for industry and academia. Rasul, Azad and Sharma, along with their team of expert contributors, provide high-end research findings on relevant industry themes, including clean and sustainable energy sources and technologies, renewable energy technologies and their applications, biomass and biofuels for sustainable environment, energy system and efficiency improvement, solar thermal applications, and the environmental impacts of sustainable energy systems. This book uses global institutes and case studies to explore and analyze technological advancements alongside practical applications. This approach helps readers to develop and affirm a better understanding of the relevant concepts and solutions necessary to achieve clean energy and sustainable development in both medium and large-scale industries. - Compares in-depth research on a wide range of clean technologies, from global institutes in Australia, Europe, and India - Evaluates the recent developments in clean technologies against the efficiency of tried and tested applications - Considers case studies on the advancements of sustainable energy into industry from around the world
The potential future fluctuations in energy security and potential climate change impacts require an emphasis on clean and renewable energies to safeguard the environment as well as economic livelihoods. The current recalcitrant nature of biomass processing has led researchers to find the most suitable technique for its depolymerization, as well as various strategies to pretreat the biomass which include physical, thermochemical, and biochemical methods and a combination of these. Biomass Energy for Sustainable Development examines how optimal biomass utilization can reduce forest management costs, help mitigate climate change, reduce risks to life and property, and help provide a secure, competitive energy source into the future. Features: Provides a comprehensive review of biomass energy and focuses on in-depth understanding of various strategies to pretreat biomass including physical, chemical, and biological Explores multidisciplinary, novel approaches including AI for furthering the understanding and generation of models, theories, and processes in the field of bioenergy Covers the sustainable development goals for bioenergy, including the related concepts of bioeconomy and the potential environmental impact from reliance on bioenergy
Do policies' environmental concerns affect biomass energy consumption? / Mara Madaleno, Margarita Robaina, and Marta Ferreira Dias, Research Unit on Governance, Competitiveness and Public Policies, University of Aveiro, Aveiro, Portugal -- New methodologies for bioenergy decision plan under circular economy business models : Real options and game theory approaches / Sílvia Ferreira Jorge, Shital Jayantilal and Joana Costa, Research Unit on Governance, Competitiveness and Public, University of Aveiro, Aveiro, Portugal, and others -- Biomass energy source through the process of development / Tiago Sequeira, Luis Mendes and Marcelo Santos, Center for Advanced Studies in Management and Economics, University of Beira Interior, Covilhã, Portugal, and others.
Sustainable Biofuels: Opportunities and challenges, a volume in the "Applied Biotechnology Reviews series, explores the state-of-the-art in research and applied technology for the conversion of all types of biofuels. Its chapters span a broad spectrum of knowledge, from fundamentals and technical aspects to optimization, combinations, economics, and environmental aspects. They cover various facets of research, production, and commercialization of bioethanol, biodiesel, biomethane, biohydrogen, biobutanol, and biojet fuel. This book discusses biochemical, thermochemical, and hydrothermal conversion of unconventional feedstocks, including the role of biotechnology applications to achieve efficiency and competitiveness. Through case studies, techno-economic analysis and sustainability assessment, including life cycle assessment, it goes beyond technical aspects to provides actual resources for better decision-making during the development of commercially viable technology by researchers, PhD students, and practitioners in the field of bioenergy. It is also a useful resource for those in adjacent areas, such as biotechnology, industrial microbiology, chemical engineering, environmental engineering, and sustainability science, who are working on solutions for the bioeconomy. The ability to compare different technologies and their outcome that this book provides is also beneficial for energy analysts, consultants, planners, and policy-makers. The "Applied Biotechnology Reviews series highlights current development and research in biotechnology-related fields, combining in single-volume works the theoretical aspects and real-world applications for better decision-making. - Covers current technologies and advancements in biochemical, thermochemical, and hydrothermal conversion methods for production of various types of biofuels from conventional and nonconventional feedstock - Examines biotechnology processes, including genetic engineering of microorganisms and substrates, applied to biofuel production - Bridges the gap between technology development and prospects of commercialization of bioprocesses, including policy and economics of biofuel production, biofuel value chains, and how to accomplish cost-competitive results and sustainable development
There is perfect relationship between energy, ecology and environment. If a proper balance is maintained among these three aspects than sustainable development for the welfare of human beings is obtained. This book has been written with a view to draw attention for integration of renewable energy in all sectors for sustainable development. The aim of this book is to examine the range of views related to renewable energy sources for sustainable and their implications. The authors have simplified and clarified renewable energy technologies and new theories for a sustainable development. Sustainable development has been characterized by an emphasis on environmental issues and its inter-relationship with renewable energy sources. In present context there is a need to develop an approach to structure the subject which hinders the development of knowledge in a systematic way. The built environment contributes significantly to the society and thus development in holistic manner. Integration of renewable energy sources is one of the major factors in determining whether a community is sustainable in the longer term or not. In this book, emphasis has been made on various aspects of energy planning such as energy assessment, energy integration, energy forecasting, energy modeling, computer modeling and techno-economic analysis of different conventional as well as non-conventional renewable energy sources. Much of the information presented in this book is basically to acquire an understanding of the integrated energy planning, its design, development, implementation, monitoring and feedback evaluation. This book will be useful for those involved in energy activities and planning.
Contribution of renewable energy to human life is essential for sustainable life on Earth. The renewable energy industry is growing rapidly to fulfil the energy demand of the continuously developing world and has become the focal centre of many researchers across the globe. This development should meet the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable development ties together concerns for the carrying capacity of natural systems with the social challenges faced by humanity. This book is intended to highlight various aspects for applications of renewable energy and sustainability. This work is a collaborative attempt to elaborate useful technical information from many countries across the globe about the competent and effective use of renewable energy systems. This book presents theoretical and experimental analysis, case studies and models in renewable energy systems issues related to Solar Energy, Wind Energy, Bio Energy, Tidal Energy, Geothermal Energy, Fuel Cells, and Energy Storage Systems. This book also contains different considerations in order to develop products contributing to the sustainability of life.
The increasing importance of biomass as a renewable energy source has lead to an acute need for reliable and detailed information on its assessment, consumption and supply. Responding to this need, and overcoming the lack of standardized measurement and accounting procedures, this handbook provides the reader with the skills to understand the biomass resource base, the tools to assess the resource, and explores the pros and cons of exploitation. Topics covered include assessment methods for woody and herbaceous biomass, biomass supply and consumption, remote sensing techniques as well as vital policy issues. International case studies, ranging from techniques for measuring tree volume to transporting biomass, help to illustrate step-by-step methods and are based on field work experience. Technical appendices offer a glossary of terms, energy units and other valuable resource data.
Given the environmental concerns and declining availability of fossil fuels, as well as the growing population worldwide, it is essential to move toward a sustainable bioenergy-based economy. However, it is also imperative to address sustainability in the bioenergy industry in order to avoid depleting necessary biomass resources. Sustainable Bioenergy Production provides comprehensive knowledge and skills for the analysis and design of sustainable biomass production, bioenergy processing, and biorefinery systems for professionals in the bioenergy field. Focusing on topics vital to the sustainability of the bioenergy industry, this book is divided into four sections: Fundamentals of Engineering Analysis and Design of Bioenergy Production Systems, Sustainable Biomass Production and Supply Logistics, Sustainable Bioenergy Processing, and Sustainable Biorefinery Systems. Section I covers the fundamentals of genetic engineering, novel breeding, and cropping technologies applied in the development of energy crops. It discusses modern computational tools used in the design and analysis of bioenergy production systems and the life-cycle assessment for evaluating the environmental sustainability of biomass production and bioenergy processing technologies. Section II focuses on the technical and economic feasibility and environmental sustainability of various biomass feedstocks and emerging technologies to improve feedstock sustainability. Section III addresses the technical and economic feasibility and environmental sustainability of different bioenergy processing technologies and emerging technologies to improve the sustainability of each bioenergy process. Section IV discusses the design and analysis of biorefineries and different biorefinery systems, including lignocellulosic feedstock, whole-crop, and green biorefinery.
Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy producti