Download Free Biomass And Bioenergy Solutions For Climate Change Mitigation And Sustainability Book in PDF and EPUB Free Download. You can read online Biomass And Bioenergy Solutions For Climate Change Mitigation And Sustainability and write the review.

The depletion of fossil fuels is a major issue in energy generation; hence, biomass and renewable energy sources, especially bioenergy, are the solution. The dependence on bioenergy has many benefits to mitigate environmental pollution. It is imperative that the global society adopts these alternative, sustainable energy sources in order to mitigate the constant growth of climate change. Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability highlights the challenges of energy conservation and current scenarios of existing fossil fuel uses along with pollution potential of burning fossil fuel. It further promotes the inventory, assessment, and use of biomass, pollution control, and techniques. This book provides the solution for climate change, mitigation, and sustainability. Covering topics such as biofuel policies, economic considerations, and microalgae biofuels, this premier reference source is an essential resource for environmental scientists, environmental engineers, government officials, business leaders, politicians, librarians, students and faculty of higher education, researchers, and academicians.
Biomass, Biochemicals, Biofuel: Climate Change Mitigation: Sequestration of Green House Gases is designed to not only give basic knowledge on the topics presented, but also to enlighten on conventional and advanced technologies, socioeconomic aspects, techno-economic feasibility, models and modeling tools, and detailed LCA approaches in the sequestration of GHGs for biofuel and biomaterials, including biopolymer production. These innovative technologies and novel prospective directly find applications in day-to-day practices. The book is a useful guide to politicians, researchers, teachers and waste management practitioners. It offers a treasure of knowledge to guide readers on the importance of GHGs sequestration in important areas. The issue of climate change is gaining much more attention by researchers, public, politicians and others. Climate change is one of the most complex issues the world is facing today. It has implications across society, including in science, technology, economics, society, politics, and moral and ethical dilemmas. Introduces appropriate technologies for GHG sequestration for biofuel and biomaterials production Presents the best available technologies for climate mitigation and examples from various geographical areas Evaluates technological systems to help users develop technically best and economically feasible projects Offers chemical looping mechanisms for the sequestration of green house gases for biofuel and biomaterials
Sustainability in agriculture and associated primary industries, which are both energy-intensive, is crucial for the development of any country. Increasing scarcity and resulting high fossil fuel prices combined with the need to significantly reduce greenhouse gas emissions, make the improvement of energy efficient farming and increased use of renewable energy essential. This book provides a technological and scientific endeavor to assist society and farming communities in different regions and scales to improve their productivity and sustainability. To fulfill future needs of a modern sustainable agriculture, this book addresses highly actual topics providing innovative, effective and more sustainable solutions for agriculture by using sustainable, environmentally friendly, renewable energy sources and modern energy efficient, cost-improved technologies. The book highlights new areas of research, and further R&D needs. It helps to improve food security for the rapidly growing world population and to reduce carbon dioxide emissions from fossil fuel use in agriculture, which presently contributes 22% of the global carbon dioxide emissions. This book provides a source of information, stimuli and incentives for what and how new and energy efficient technologies can be applied as effective tools and solutions in agricultural production to satisfy the continually increasing demand for food and fibre in an economically sustainable way, while contributing to global climate change mitigation. It will be useful and inspiring to decision makers working in different authorities, professionals, agricultural engineers, researchers, and students concerned with agriculture and related primay industries, sustainable energy development and climate change mitigation projects.
The North American Great Plains is a major global breadbasket but its agriculture is stressed by drought, heat, damaging winds, soil erosion and declining ground water resources. Biomass production and processing on the Plains would partially restore a perennial vegetative cover and create employment opportunities. This book explores the possibility that the ecology and economy of the Plains region, and similar regions, would benefit from the introduction of perennial biomass crops.
This book highlights clean energy transition via sustainable utilization of biomass resources, viz. forestry, agriculture, agroforestry, grassland, and seaweeds to climate change mitigation. Bioresources have tremendous potential to mitigate global warming. Also, biomass is expected to play a multifunctional role including food production, source of energy and fodder, biodiversity conservation, and yield of goods and services to the society. It brings together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation. The book presents the way forward to policy makers and stakeholders involved with bioenergy development. This development may be directive challenges in the transport sector where options such as hydrogen and electric vehicles relying on hydro, wind, and solar PV will require decades to become established on a substantial scale. Furthermore, meeting ambitious climate change targets will also require environment-friendly fuels in air and marine transport where no alternative to biofuels is currently available. The process design-via-onion model for sustainable utilization of biomass resources is also one of the most important subjects of the book. This book includes state-of-the-art approaches on bottlenecks and circular economy analysis for biomass energy use to reduce climate change and sustainability frameworks to guide bioenergy development.
Because of the major opportunities and risks associated with it, and the complexity of the subject, bioenergy policy has in a short time become a challenging political task for regulators and planners – a task that can only be accomplished through worldwide cooperation and the creation of an international framework. This book's central message is that the sustainable potential of bioenergy, which can be tapped all over the world, should be utilized – provided that threats to sustainability are avoided. In particular, the use of bioenergy must not endanger food security or the goals of nature conservation and climate change mitigation.
Climate change poses a fundamental threat to humanity, and thus solutions for both mitigation and adaptation strategies are becoming increasingly necessary. Biochar can offer a range of environmental services, such as reclamation of degraded land, improvement of soil fertility and carbon sequestration. However, it also raises questions, regarding sustainable feedstock provision, biomass pyrolysis, and soil amendment. These questions, among various others, are addressed in this state-of-the-art compendium. Covering a broad geographical range, with regional assessments from North America, Europe, the Near East, and Southeast Asia, this interdisciplinary volume focuses on the entire biochar supply chain, from the availability and economics of biomass resources, to pyrolysis, and ultimately to the impacts on soil properties. The combination of theory with practical examples makes this a valuable book for researchers, policymakers, and graduate students alike, in fields such as soil science, sustainable development, climate change mitigation, biomass and bioenergy, forestry, and environmental engineering.
An essential resource for understanding the potential role for biomass energy with carbon capture and storage in addressing climate change Biomass Energy with Carbon Capture and Storage (BECCS) offers a comprehensive review of the characteristics of BECCS technologies in relation to its various applications. The authors — a team of expert professionals — bring together in one volume the technical, scientific, social, economic and governance issues relating to the potential deployment of BECCS as a key approach to climate change mitigation. The text contains information on the current and future opportunities and constraints for biomass energy, explores the technologies involved in BECCS systems and the performance characteristics of a variety of technical systems. In addition, the text includes an examination of the role of BECCS in climate change mitigation, carbon accounting across the supply chain and policy frameworks. The authors also offer a review of the social and ethical aspects as well as the costs and economics of BECCS. This important text: Reveals the role BECCS could play in the transition to a low-carbon economy Discusses the wide variety of technical and non-technical constraints of BECCS Presents the basics of biomass energy systems Reviews the technical and engineering issues pertinent to BECCS Explores the societal implications of BECCS systems Written for academics and research professionals, Biomass Energy with Carbon Capture and Storage (BECCS) brings together in one volume the issues surrounding BECCS in an accessible and authoritative manner.
The valuable characteristics of animal waste materials in terms of climatic change impact and bioenergy production are discussed in this book. Reutilization of such wastes for bioenergy harvest is the prime focus; the great need for future animal waste recycling is also depicted. Major topics discussed are types of livestock waste – poultry and dairy, methods and management of waste utilization and storage, application of animal waste in bioenergy production, economics of waste utilization, novel disposable techniques, circular bioeconomy, pollution, and water quality. Furthermore, utilization of animal waste for resource conservation and environmental protection is discussed, such as potential materials for green biochemicals. Resource recovery can, therefore, forestall the shortage of natural resources and, at the same time, can greatly reduce waste-disposal problems and energy crises. Many alternatives to waste disposal, either currently available or under study, focus on the recovery of material or energy. In a world of diminishing resources and increasing needs, each opportunity for the recycling of animal waste materials has been examined. This book significantly contributes toward climate change mitigation through better environmental solutions. A better understanding of animal waste recycling to mitigate climate changes has been portrayed in order to generate discussions among researchers and administrators. Environmental implications of animal waste are of prime importance in climate change scenario. Such wastes also harbor zoonotic pathogens that are transported in the environment. Finally, it has been tried out to collect ideas and experience in multiple aspects of animal waste management for climate change mitigation and bioenergy harvest.