Download Free Biomarkers And Biosensors For Cervical Cancer Diagnosis Book in PDF and EPUB Free Download. You can read online Biomarkers And Biosensors For Cervical Cancer Diagnosis and write the review.

This book highlights both conventional and nanomaterials-based biosensors for the detection of cervical cancers. It describes developments in the selective and sensitive electrochemical biosensors based on DNA for the early diagnosis of cervical cancer. Further, this book covers other nano-biosensing systems such as nano-thermometry-based sensing platforms, mechanical sensing platforms encompassing piezoelectric-based sensors, electrochemical impedance spectroscopy based on PEGylated arginine functionalized magnetic nanoparticles, and field-effect transistor-based platforms for the early detection of cervical cancer. Also, it presents conventional platforms such as vibrational spectroscopy and polymerase chain reaction techniques for the diagnosis of cervical cancer. Finally, it reviews currently available biomarkers for the early diagnosis of cervical cancer and presents strategies for developing novel biomarkers based on cellular and molecular approaches. As such, this book is a comprehensive resource for researchers and clinicians working in cervical cancer diagnostics.
Bridging the gap between research and clinical application, Biosensors and Molecular Technologies for Cancer Diagnosticsexplores the use of biosensors as effective alternatives to the current standard methods in cancer diagnosis and detection. It describes the major aspects involved in detecting and diagnosing cancer as well as the basic elements of biosensors and their applications in detection and diagnostics. The book addresses cancer molecular diagnostics, including genomic and proteomic approaches, from the perspective of biosensors and biodetection. It explains how to measure and understand molecular markers using biosensors and discusses the medical advantages of rapid and accurate cancer diagnostics. It also describes optical, electrochemical, and optomechanical biosensor technologies, with a focus on cancer analysis and the clinical utility of these technologies for cancer detection, diagnostics, prognostics, and treatment. Making biosensor technology more accessible to molecular biologists, oncologists, pathologists, and engineers, this volume advances the integration of this technology into mainstream clinical practice. Through its in-depth coverage of a range of biosensors, the book shows how they can play instrumental roles in the early molecular diagnosis of cancer.
Understanding the importance and application of biosensors is complicated by the diverse range of methods and applications. Furthermore, existing texts are somewhat technical in nature, making it difficult for the novice. This book disseminates information on biosensors in a readable way, suitable to a wide audience with varying levels of experienc
This book presents recent research on cancer detection methods based on nanobiosensors, which offer ultrasensitive point-of-care diagnosis. Several methods for diagnosing cancer have been discovered and many more are currently being developed. Conventional clinical approaches to detecting cancers are based on a biopsy followed by histopathology, or on the use of biomarkers (protein levels or nucleic acid content). Biopsy is the most widely used technique; however, it is an invasive technique and is not always applicable. Furthermore, biomarker-based detection cannot be relied on when the biomarkers are present in an extremely low concentration in the body fluids and in malignant tissues. Thus, in recent years highly sensitive and robust new cancer diagnosis techniques have been developed for clinical application, and may offer an alternative strategy for cancer diagnosis. As such, this book gathers the latest point-of-care cancer diagnostic methods and protocols based on biomedical sensors, microfluidics, and integrated systems engineering. It also discusses recent developments and diagnostics tests that can be conducted outside the laboratory in remote areas. These technologies include electrochemical sensors, paper-based microfluidics, and other kit-based diagnostic methods that can be adapted to bring cancer detection and diagnostics to more remote settings around the globe. Overall, the book provides students, researchers, and clinicians alike a comprehensive overview of interdisciplinary approaches to cancer diagnosis.
Gleaning information from more than 100 experts in the field of cancer diagnosis, prognosis, and therapy worldwide, Cancer Biomarkers: Non-Invasive Early Diagnosis and Prognosis determines the significance of clinical validation approaches for several markers. This book examines the use of noninvasive or minimally invasive molecular cancer m
Prepared by world leaders on this topic, Biomarkers in Cancer Screening and Early Detection offers a comprehensive, state-of-the-art perspective on the various research and clinical aspects of cancer biomarkers, from their discovery and development to their validation, clinical utility, and use in developing personalized cancer treatment. Offers a comprehensive, state-of-the-art perspective on the various research and clinical aspects of cancer biomarkers Provides immediately actionable information and hopefully also inspiration to move discovery and clinical application forward Offers vital knowledge to help develop personalized cancer treatment for individual patients with specific cancers
This book provides information about different types and stages of cancer and their subtypes with their respective molecular mechanisms, etiology, histopathology, and cellular origins. This book also provides detailed information about cancer incidence, mortality, and different types of technologies both bio and nano employed in cancer diagnosis and screening, and their applications in cancer therapies. This book informs readers about molecular mechanisms of cancer, diagnosis, and therapies along with different computational techniques used on a single platform. The chapters include a broad and integrated perspective on cancer-related topics. This book covers both conventional and emerging techniques employed in cancer screening and diagnosis, including imaging, biomarker, and electrochemical nanosensor-based approaches with detailed information on sensor development. Similarly, this book also covers the mechanisms of different conventional and emerging herbal and nano therapies used in cancer treatment. The authors discuss applications of different computational and mathematical tools, such as machine-learning methods, that can be employed in cancer diagnosis and therapy at the level of personalized medicine. Features: Offers an integrated approach to provide information about all aspects of cancer biology, diagnosis, and therapy Focuses on both conventional and emerging tools/techniques applicable in cancer screening and diagnosis Covers the mechanisms of conventional and emerging anticancer drugs and therapies Provides insights about a personalized medicine-based approach in cancer diagnosis and therapy This book is essential for university students, course lecturers, researchers, and industrialists working in the fields of cancer biology, medicine, and pharmacology.
Early diagnosis of cancer and other non-oncological disorders gives a significant advantage for curing the disease and improving patient’s life expectancy. Recent advances in biosensor-based techniques which are designed for specific biomarkers can be exploited for early diagnosis of diseases. Biosensor Based Advanced Cancer Diagnostics covers all available biosensor-based approaches and comprehensive technologies; along with their application in diagnosis, prognosis and therapeutic management of various oncological disorders. Besides this, current challenges and future aspects of these diagnostic approaches have also been discussed. This book offers a view of recent advances and is also helpful for designing new biosensor-based technologies in the field of medical science, engineering and biomedical technology. Biosensor Based Advanced Cancer Diagnostics helps biomedical engineers, researchers, molecular biologists, oncologists and clinicians with the development of point of care devices for disease diagnostics and prognostics. It also provides information on developing user friendly, sensitive, stable, accurate, low cost and minimally invasive modalities which can be adopted from lab to clinics. This book covers in-depth knowledge of disease biomarkers that can be exploited for designing and development of a range of biosensors. The editors have summarized the potential cancer biomarkers and methodology for their detection, plus transferring the developed system to clinical application by miniaturization and required integration with microfluidic systems. Covers design and development of advanced platforms for rapid diagnosis of cancerous biomarkers Takes a multidisciplinary approach to sensitive transducers development, nano-enabled advanced imaging, miniaturized analytical systems, and device packaging for point-of-care applications Offers an insight into how to develop cost-effective diagnostics for early detection of cancer
Research has long sought to identify biomarkers that could detect cancer at an early stage, or predict the optimal cancer therapy for specific patients. Fueling interest in this research are recent technological advances in genomics, proteomics, and metabolomics that can enable researchers to capture the molecular fingerprints of specific cancers and fine-tune their classification according to the molecular defects they harbor. The discovery and development of new markers of cancer could potentially improve cancer screening, diagnosis, and treatment. Given the potential impact cancer biomarkers could have on the cost effectiveness of cancer detection and treatment, they could profoundly alter the economic burden of cancer as well. Despite the promise of cancer biomarkers, few biomarker-based cancer tests have entered the market, and the translation of research findings on cancer biomarkers into clinically useful tests seems to be lagging. This is perhaps not surprising given the technical, financial, regulatory, and social challenges linked to the discovery, development, validation, and incorporation of biomarker tests into clinical practice. To explore those challenges and ways to overcome them, the National Cancer Policy Forum held the conference "Developing Biomarker-Based Tools for Cancer Screening, Diagnosis and Treatment: The State of the Science, Evaluation, Implementation, and Economics" in Washington, D.C., from March 20 to 22, 2006. At this conference, experts gave presentations in one of six sessions. In addition, seven small group discussions explored the policy implications surrounding biomarker development and adoption into clinical practice. Developing Biomarker-based Tools for Developing Cancer Screening, Diagnosis, and Treatment: The State of the Science, Evaluation, Implementation, and Economics-Workshop Summary presents the conference proceedings and will be used by an Institute of Medicine (IOM) committee to develop consensus-based recommendations for moving the field of cancer biomarkers forward.
Many cancer patients are diagnosed at a stage in which the cancer is too far advanced to be cured, and most cancer treatments are effective in only a minority of patients undergoing therapy. Thus, there is tremendous opportunity to improve the outcome for people with cancer by enhancing detection and treatment approaches. Biomarkers will be instrumental in making that transition. Advances in biotechnology and genomics have given scientists new hope that biomarkers can be used to improve cancer screening and detection, to improve the drug development process, and to enhance the effectiveness and safety of cancer care by allowing physicians to tailor treatment for individual patients—an approach known as personalized medicine. However, progress overall has been slow, despite considerable effort and investment, and there are still many challenges and obstacles to overcome before this paradigm shift in oncology can become a reality.