Download Free Biology Of Rhizobiaceae Book in PDF and EPUB Free Download. You can read online Biology Of Rhizobiaceae and write the review.

The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria. This book gives a comprehensive overview on our present molecular biological knowledge about the Rhizobiaceae, which currently can be called the best-studied family of soil bacteria. For many centuries they have attracted the attention of scientists because of their capacity to associate with plants and as a consequence also to specifically modify plant development. Some of these associations are beneficial for the plant, as is the case for the Rhizobiaceae subgroups collectively called rhizobia, which are able to fix nitrogen in a symbiosis with the plant hosts. This symbiosis results in the fonnation of root or stem nodules, as illustrated on the front cover. In contrast, several Rhizobiaceae subgroups can negatively affect plant development and evoke plant diseases. Examples are Agrobacterium tumefaciens andA. rhizogenes which induce the formation of crown galls or hairy roots on the stems of their host plants, respectively (bottom panels on front cover). In addition to the obvious importance of studies on the Rhizobiaceae for agronomy, this research field has resulted in the discovery of many fundamental scientific principles of general interest, which are highlighted in this book. To mention three examples: (i) the discovery of DNA transfer of A.
Rhizobia are bacteria which inhabit the roots of plants in the pea family and "fix" atmospheric nitrogen for plant growth. They are thus of enormous economic importance internationally and the subject of intense research interest. Handbook for Rhizobia is a monumental book of practical methods for working with these bacteria and their plant hosts. Topics include the general microbiological properties of rhizobia and their identification, their potential as symbionts, methods for inoculating rhizobia onto plants, and molecular genetics methods for Rhizobium in the laboratory. The book will be invaluable to Rhizobium scientists, soil microbiologists, field and laboratory researchers at agricultural research centers, agronomists, and crop scientists.
This book provides in-depth reviews of the role of Rhizobium in agriculture and its biotechnological applications. Individual chapters explore topics such as: the occurrence and distribution of Rhizobium; phenotypic and molecular characteristics of Rhizobium; impact of Rhizobium on other microbial communities in the rhizosphere; N2-fixation ability of Rhizobium; Rhizobium and biotic stress; Rhizobium-mediated restoration of an ecosystem; in silico analysis of the rhizobia pool; further biotechnological perspectives of Rhizobium.
During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.
Biology of the Rhizobiaceae covers the genetics, molecular biology, agricultural, and morphological aspects of the rhizobia. The book discusses the taxonomy and identification of the Rhizobiaceae; the biology of Agrobacterium tumefaciens and the specific events in the disease cycle of crown gall; and the agricultural control of Agrobacterium tumefaciens. The text also describes the growth potential of crown gall tumors and crown gall teratoma; plasmid studies in crown gall tumorigenesis; and the biology and microbiology of Agrobacterium rhizogenes. The recognition in rhizobium-legume symbioses; the rhizobium bacteroid state; and the exchange of metabolites and energy between legume and rhizobium are also considered. The book further tackles the mutants of rhizobium that are altered in legume interaction and nitrogen fixation; as well as the significance and application of Rhizobium in agriculture. Botanists, agriculturists, geneticists, molecular biologists, microbiologists, plant pathologists, and agronomists will find the book invaluable.
Biological nitrogen fixation has essential role in N cycle in global ecosystem. Several types of nitrogen fixing bacteria are recognized: the free-living bacteria in soil or water; symbiotic bacteria making root nodules in legumes or non-legumes; associative nitrogen fixing bacteria that resides outside the plant roots and provides fixed nitrogen to the plants; endophytic nitrogen fixing bacteria living in the roots, stems and leaves of plants. In this book there are 11 chapters related to biological nitrogen fixation, regulation of legume-rhizobium symbiosis, and agriculture and ecology of biological nitrogen fixation, including new models for autoregulation of nodulation in legumes, endophytic nitrogen fixation in sugarcane or forest trees, etc. Hopefully, this book will contribute to biological, ecological, and agricultural sciences.
A guide to the role microbes play in the enhanced production and productivity of agriculture to feed our growing population Phytomicrobiome Interactions and Sustainable Agriculture offers an essential guide to the importance of ‘Phytomicrobiome’ and explores its various components. The authors – noted experts on the topic – explore the key benefits of plant development such as nutrient availability, amelioration of stress and defense to plant disease. Throughout the book, the authors introduce and classify the corresponding Phytomicrobiome components and then present a detailed discussion related to its effect on plant development: controlling factors of this biome, its behaviour under the prevailing climate change condition and beneficial effects. The book covers the newly emerging technical concept of Phytomicrobiome engineering, which is an advanced concept to sustain agricultural productivity in recent climatic scenario. The text is filled with comprehensive, cutting edge data, making it possible to access this ever-growing wealth of information. This important book: Offers a one-stop resource on phytomicrobiome concepts Provides a better understanding of the topic and how it can be employed for understanding plant development Contains a guide to sustaining agriculture using phytomicrobiome engineering Presents information that can lead to enhanced production and productivity to feed our growing population Written for students, researchers and policy makers of plant biology, Phytomicrobiome Interactions and Sustainable Agriculture offers a clear understanding of the importance of microbes in overall plant growth and development.
This series was established to create comprehensive treatises on specific topics in developmental biology. Such volumes serve a useful role in developmental biology, which is a very diverse field that receives contributions from a wide variety of disciplines. This series is a meeting ground for the various practi tioners of this science, facilitating an integration of heterogeneous information on specific topics. Each volume is comprised of chapters selected to provide the conceptual basis for a comprehensive understanding of its topic as well as an analysis of the key experiments upon which that understanding is based. The specialist in any aspect of developmental biology should understand the experimental back ground of the specialty and be able to place that body of information in context, in order to ascertain where additional research would be fruitful. The creative process then generates new experiments. This series is intended to be a vital link in that ongoing process of learning and discovery.