Download Free Biology Of Plants Book in PDF and EPUB Free Download. You can read online Biology Of Plants and write the review.

2000-2005 State Textbook Adoption - Rowan/Salisbury.
Plant Biology is a new textbook written for upper-level undergraduate and graduate students. It is an account of modern plant science, reflecting recent advances in genetics and genomics and the excitement they have created. The book begins with a review of what is known about the origins of modern-day plants. Next, the special features of plant genomes and genetics are explored. Subsequent chapters provide information on our current understanding of plant cell biology, plant metabolism, and plant developmental biology, with the remaining three chapters outlining the interactions of plants with their environments. The final chapter discusses the relationship of plants with humans: domestication, agriculture and crop breeding. Plant Biology contains over 1,000 full color illustrations, and each chapter begins with Learning Objectives and concludes with a Summary.
Functional Biology of Plants provides students and researchers with a clearly written, well structured whole plant physiology text. Early in the text, it provides essential information on molecular and cellular processes so that the reader can understand how they are integrated into the development and function of the plant at whole-plant level. Thus, this beautifully illustrated book, presents a modern, applied integration of whole plant and molecular approaches to the study of plants. It is divided into four parts: Part 1: Genes and Cells, looks at the origins of plants, cell structure, biochemical processes and genes and development. Part 2: The Functioning Plant, describes the structure and function of roots, stems, leaves, flowers and seed and fruit development. Part 3: Interactions and Adaptations, examines environmental and biotic stresses and how plants adapt and acclimatise to these conditions. Part 4: Future Directions, illustrates the great importance of plant research by looking at some well chosen, topical examples such as GM crops, biomass and bio-fuels, loss of plant biodiversity and the question of how to feed the planet. Throughout the book there are text boxes to illustrate particular aspects of how humans make use of plants, and a comprehensive glossary proves invaluable to those coming to the subject from other areas of life science.
With over 1000 original drawings and 500 photographs, this work offers complete coverage of cell biology, plant physiology and molecular biology.
Plants are integral to human wellbeing, and many species have been domesticated for over ten thousand years. Evidence of plant scientific investigation and classification can be found in ancient texts from cultures around the world (Chinese, Indian, Greco-Roman, Muslim etc.), while early modern botany can be traced to the late 15th and early 16th centuries in Europe. During the past several decades plant biology has been revolutionized first by molecular biology and then by the genomic era. The model organism Arabidopsis thaliana has proved an invaluable tool for investigation into fundamental processes in plant biology, many of which share commonalities with animal biology. Plant-specific processes from reproduction to immunity and second messengers have also yielded to extensive investigation. With the genomes of more than thirty plant species now available and many more planned in the near future, the impact on our understanding of plant evolution and biology continues to grow. Our increased ability to engineer plant species to a variety of ends may provide novel solutions to ensure adequate and reliable food production and renewable energy even as climate change impacts our environment. The decision to focus the 2012 Symposium on plant science reflects the enormous research progress achieved in recent years, and is intended to provide a broad synthesis of the current state of the field, setting the stage for future discoveries and application. This is the first Symposium in this historic series focused exclusively on the botanical sciences. Plants are integral to human wellbeing, and many species have been domesticated for over ten thousand years. Evidence of plant scientific investigation and classification can be found in ancient texts from cultures around the world (Chinese, Indian, Greco-Roman, Muslim etc.), while early modern botany can be traced to the late 15th and early 16th centuries in Europe. During the past several decades plant biology has been revolutionized first by molecular biology and then by the genomic era. The model organism Arabidopsis thaliana has proved an invaluable tool for investigation into fundamental processes in plant biology, many of which share commonalities with animal biology. Plant-specific processes from reproduction to immunity and second messengers have also yielded to extensive investigation. With the genomes of more than thirty plant species now available and many more planned in the near future, the impact on our understanding of plant evolution and biology continues to grow. Our increased ability to engineer plant species to a variety of ends may provide novel solutions to ensure adequate and reliable food production and renewable energy even as climate change impacts our environment. The decision to focus the 2012 Symposium on plant science reflects the enormous research progress achieved in recent years, and is intended to provide a broad synthesis of the current state of the field, setting the stage for future discoveries and application. This is the first Symposium in this historic series focused exclusively on the botanical sciences.
Provides a comprehensive synthesis of modern evolutionary biology as it relates to plants. This text recounts the saga of plant life from its origins to the radiation of the flowering plants. Through computer-generated "walks" it shows how living plants might have evolved.
This book critically reviews advances in our understanding of the biology of vascular epiphytes since Andreas Schimper’s 1888 seminal work. It addresses all aspects of their biology, from anatomy and physiology to ecology and evolution, in the context of general biological principles. By comparing epiphytes with non-epiphytes throughout, it offers a valuable resource for researchers in plant sciences and related disciplines. A particular strength is the identification of research areas that have not received the attention they deserve, with conservation being a case in point. Scientists have tended to study pristine systems, but global developments call for information on epiphytes in human-disturbed systems and the response of epiphytes to global climate change.
The seventh edition of this book includes chapter overviews, checkpoints, detailed summaries, summary tables, a list of key terms and end-of-chapter questions. There is also a new chapter on recombinant DNA technology, plant biotechnology, and genomics.
Plant volatiles—compounds emitted from plant organs to interact with the surrounding environment—play essential roles in attracting pollinators and defending against herbivores and pathogenes, plant-plant signaling, and abiotic stress responses. Biology of Plant Volatiles, with contributions from leading international groups of distinguished scientists in the field, explores the major aspects of plant scent biology. Responding to new developments in the detection of the complex compound structures of volatiles, this book details the composition and biosynthesis of plant volatiles and their mode of emission. It explains the function and significance of volatiles for plants as well as insects and microbes whose interactions with plants are affected by these compounds. The content also explores the biotechnological and commercial potential for the manipulation of plant volatiles. Features: Combines widely scattered literature in a single volume for the first time, covering all important aspects of plant volatiles, from their chemical structures to their biosynthesis to their roles in the interactions of plants with their biotic and abiotic environment Takes an interdisciplinary approach, providing multilevel analysis from chemistry and genes to enzymology, cell biology, organismal biology and ecology Includes up-to-date methodologies in plant scent biology research, from molecular biology and enzymology to functional genomics This book will be a touchstone for future research on the many applications of plant volatiles and is aimed at plant biologists, entomologists, evolutionary biologists and researchers in the horticulture and perfume industries.
A stunning landmark co-publication between the American Society of Plant Biologists and Wiley-Blackwell. The Molecular Life of Plants presents students with an innovative, integrated approach to plant science. It looks at the processes and mechanisms that underlie each stage of plant life and describes the intricate network of cellular, molecular, biochemical and physiological events through which plants make life on land possible. Richly illustrated, this book follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence. This "seed-to-seed" approach will provide students with a logical framework for acquiring the knowledge needed to fully understand plant growth and development. Written by a highly respected and experienced author team The Molecular Life of Plants will prove invaluable to students needing a comprehensive, integrated introduction to the subject across a variety of disciplines including plant science, biological science, horticulture and agriculture.