Download Free Biology Of Neuroglia Book in PDF and EPUB Free Download. You can read online Biology Of Neuroglia and write the review.

Biology of Neuroglia
Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role og glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides
"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.
Graduate students in neuroanatomy, neurochemistry, neurophysiology, and molecular neurobiology will find the book indispensable. It is also a vital companion for researchers in these fields as well as clinicians in neurology, neurosurgery, neuropathology, neuro-oncology, physiatry, and psychiatry."--BOOK JACKET.
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography
This book is the introduction to a series of e-books dedicated to the physiology and pathophysiology of neuroglia. The topic of neuroglia is generally overlooked in neuroscience curricula across the world, the main attention being focused on the description of excitability of neurons and neuronal networks. The neuroglia, being electrically non-excitable, are universally regarded as supportive cells which do not contribute to information processing. This oversimplified view, however, ignores the tremendous importance of brain homeostasis, which is imperative for the ongoing activity of neuronal networks. It also ignores the truth that specialization of neurons and their ability for rapid propagation and multi-level integration of signals become possible only because of delegation of homeostatic abilities to neuroglia. Furthermore, glial cells contribute to information processing as they can modulate neuronal synaptic transmission. Finally, neuroglia provide the only system of brain defense and as such these cells are intimately involved in all types of neuropathologies, and contribute to both neuroprotection and regeneration of the nervous system. The e-books in this series provide a platform for in-depth learning of all aspects of neuroglial cells function in health and disease.
A timely overview covering the three major types of glial cells in the central nervous system - astrocytes, microglia, and oligodendrocytes. New findings on glia biology are overturning a century of conventional thinking about how the brain operates and are expanding our knowledge about information processing in the brain. The book will present recent research findings on the role of glial cells in both healthy function and disease. It will comprehensively cover a broad spectrum of topics while remaining compact in size.
This book reviews the role of glial cells (astrocytes, microglia, oligodendroglia, satellite cells, and Schwann cells) in neuronal health and diseases. It discusses the latest advances in understanding their origin, differentiation, and hemostasis. The book also examines the role of microglial cells in central nervous system (CNS) development, maintenance, and synaptic plasticity. Further, the book presents the functions of astrocytes in healthy CNS and their critical role in CNS disorders, including Parkinson's and Alzheimer's diseases. Notably, the book describes the pathobiology, molecular pathogenesis, stem cells, and imaging characteristics of gliomas. It defines the role of glial cells in regulating iron homeostasis and their effect on the neurodegeneration of neurons. Lastly, it covers the structure, function, and pathology of oligodendrocytes and their role in neuronal health and disease. ​
The nematode C. elegans is one of the most important model organisms for understanding neurobiology. Its completely mapped neural connectome of 302 neurons and fully characterized and stereotyped development have made it a prototype for understanding nervous system structure, development, and function. Fifty-six out of C. elegans' total of 959 somatic cells are classified as neuroglia. Although research on worm glia has lagged behind studies focused on neurons, there has been a steep upswing in interest during the past decade. Information arising from the recent burst of research on worm glia supports the idea that C. elegans will continue to be an important animal model for understanding glial cell biology. Since the developmental lineage of all cells was mapped, each glial cell in C. elegans is known by a specific name and has research associated with it. We list and describe the glia of the hermaphrodite form of C. elegans and summarize research findings relating to each glial cell. We hope this lecture provides an informative overview of worm glia to accompany the excellent and freely available online resources available to the worm research community.