Download Free Biology Computing And The History Of Molecular Sequencing Book in PDF and EPUB Free Download. You can read online Biology Computing And The History Of Molecular Sequencing and write the review.

Sequencing is often associated with the Human Genome Project and celebrated achievements concerning the DNA molecule. However, the history of this practice comprises not only academic biology, but also the world of computer-assisted information management. The book uncovers this history, qualifying the hype and expectations around genomics.
Sequencing is often associated with the Human Genome Project and celebrated achievements concerning the DNA molecule. However, the history of this practice comprises not only academic biology, but also the world of computer-assisted information management. The book uncovers this history, qualifying the hype and expectations around genomics.
Sequencing is often associated with the Human Genome Project and celebrated achievements concerning the DNA molecule. However, the history of this practice comprises not only academic biology, but also the world of computer-assisted information management. The book uncovers this history, qualifying the hype and expectations around genomics.
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
In recent decades, there has been a major shift in the way researchers process and understand scientific data. Digital access to data has revolutionized ways of doing science in the biological and biomedical fields, leading to a data-intensive approach to research that uses innovative methods to produce, store, distribute, and interpret huge amounts of data. In Data-Centric Biology, Sabina Leonelli probes the implications of these advancements and confronts the questions they pose. Are we witnessing the rise of an entirely new scientific epistemology? If so, how does that alter the way we study and understand life—including ourselves? Leonelli is the first scholar to use a study of contemporary data-intensive science to provide a philosophical analysis of the epistemology of data. In analyzing the rise, internal dynamics, and potential impact of data-centric biology, she draws on scholarship across diverse fields of science and the humanities—as well as her own original empirical material—to pinpoint the conditions under which digitally available data can further our understanding of life. Bridging the divide between historians, sociologists, and philosophers of science, Data-Centric Biology offers a nuanced account of an issue that is of fundamental importance to our understanding of contemporary scientific practices.
"Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making complete genome sequencing an affordable and frequently used tool for a wide variety of research applications. This book provides a thorough introduction to the necessary informatics methods and tools for operating NGS instruments and analyzing NGS data"
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Encyclopedia of Evolutionary Biology, Four Volume Set is the definitive go-to reference in the field of evolutionary biology. It provides a fully comprehensive review of the field in an easy to search structure. Under the collective leadership of fifteen distinguished section editors, it is comprised of articles written by leading experts in the field, providing a full review of the current status of each topic. The articles are up-to-date and fully illustrated with in-text references that allow readers to easily access primary literature. While all entries are authoritative and valuable to those with advanced understanding of evolutionary biology, they are also intended to be accessible to both advanced undergraduate and graduate students. Broad topics include the history of evolutionary biology, population genetics, quantitative genetics; speciation, life history evolution, evolution of sex and mating systems, evolutionary biogeography, evolutionary developmental biology, molecular and genome evolution, coevolution, phylogenetic methods, microbial evolution, diversification of plants and fungi, diversification of animals, and applied evolution. Presents fully comprehensive content, allowing easy access to fundamental information and links to primary research Contains concise articles by leading experts in the field that ensures current coverage of each topic Provides ancillary learning tools like tables, illustrations, and multimedia features to assist with the comprehension process
This open access book offers a comprehensive overview of the history of genomics across three different species and four decades, from the 1980s to the recent past. It takes an inclusive approach in order to capture not only the international initiatives to map and sequence the genomes of various organisms, but also the work of smaller-scale institutions engaged in the mapping and sequencing of yeast, human and pig DNA. In doing so, the authors expand the historiographical lens of genomics from a focus on large-scale projects to other forms of organisation. They show how practices such as genome mapping, sequence assembly and annotation are as essential as DNA sequencing in the history of genomics, and argue that existing depictions of genomics are too closely associated with the Human Genome Project. Exploring the use of genomic tools by biochemists, cell biologists, and medical and agriculturally-oriented geneticists, this book portrays the history of genomics as inseparably entangled with the day-to-day practices and objectives of these communities. The authors also uncover often forgotten actors such as the European Commission, a crucial funder and forger of collaborative networks undertaking genomic projects. In examining historical trajectories across species, communities and projects, the book provides new insights on genomics, its dramatic expansion during the late twentieth-century and its developments in the twenty-first century. Offering the first extensive critical examination of the nature and historicity of reference genomes, this book demonstrates how their affordances and limitations are shaped by the involvement or absence of particular communities in their production.
'Rethinking Biology offers many useful perspectives on a range of topics: why neuroscience and brain imaging threaten to create a reductive view of self and behaviour every bit as misleading as the genetic one, why adaptationism needs taming in evolutionary narratives …'Public Understanding of ScienceBiologists always need to grapple with integrating two explanatory approaches. On the one hand, there is necessarily an effort to drill down to the lowest possible level to explain what is happening in whatever is being studied. That involves looking at how higher-level processes arise from lower level ones. On the other hand, there is a need to consider how the broader context influences bottom-up processes; that involves looking at how the whole influences the parts. Neither approach is satisfactory on its own. There is always a need to integrate the consideration of how parts influence wholes with how wholes influence parts.This book arises from a concern that in the public dissemination of biology the need to integrate these different perspectives is not coming across well. In popularisations, simplistic micro explanations always seem to arouse most interest and to capture the headlines. That risks distorting and simplifying the complexity of biological processes, and can mislead people. In this book we are urging a concerted attempt to come to grips with the interactive complexity of biology, and to find ways of conveying it to the public accessibly and effectively.We are particularly concerned with how biology is communicated to the public. Too often, what comes over to the public is a crude, out-of-date, simplistic, mono-causal, reductionist biology. Why so? Why is biology so misrepresented? Who is responsible? It is partly the media, of course, but we suggest that biologists themselves are often partly responsible. When it comes to communication with the public, they tend to over-simplify in a way that distorts.Related Link(s)