Download Free Biology And Geology Of Deep Sea Coral Ecosystems Book in PDF and EPUB Free Download. You can read online Biology And Geology Of Deep Sea Coral Ecosystems and write the review.

There are more coral species in deep, cold-waters than in tropical coral reefs. This broad-ranging treatment is the first to synthesise current understanding of all types of cold-water coral, covering their ecology, biology, palaeontology and geology. Beginning with a history of research in the field, the authors describe the approaches needed to study corals in the deep sea. They consider coral habitats created by stony scleractinian as well as octocoral species. The importance of corals as long-lived geological structures and palaeoclimate archives is discussed, in addition to ways in which they can be conserved. Topic boxes explain unfamiliar concepts, and case studies summarize significant studies, coral habitats or particular conservation measures. Written for professionals and students of marine science, this text is enhanced by an extensive glossary, online resources, and a unique collection of color photographs and illustrations of corals and the habitats they form.
"This broad-ranging treatment is the first to synthesise current understanding of all types of cold-water coral, covering their ecology, biology, paleontology and geology."--Back cover.
Cold-water coral ecosystems figure the formation of large seabed structures such as reefs and giant carbonate mounds; they represent unexplored paleo-environmental archives of earth history. Like their tropical cousins, cold-water coral ecosystems harbour rich species diversity. For this volume, key institutions in cold-water coral research have contributed 62 state-of-the-art articles on topics from geology and oceanography to biology and conservation, with some impressive underwater images.
This book summarizes what is known about mesophotic coral ecosystems (MCEs) geographically and by major taxa. MCEs are characterized by light-dependent corals and associated communities typically found at depths ranging from 30-40 m. and extending to over 150 m. in tropical and subtropical ecosystems. They are populated with organisms typically associated with shallow coral reefs, such as macroalgae, corals, sponges, and fishes, as well as specialist species unique to mesophotic depths. During the past decade, there has been an increasing scientific and management interest in MCEs expressed by the exponential increase in the number of publications studying this unique environment. Despite their close proximity to well-studied shallow reefs, and the growing evidence of their importance, our scientific knowledge of MCEs is still in its early stages. The topics covered in the book include: regional variation in MCEs; similarities and differences between mesophotic and shallow reef taxa, biotic and abiotic conditions, biodiversity, ecology, geomorphology, and geology; potential connectivity between MCEs and shallow reefs; MCE disturbances, conservation, and management challenges; and new technologies, key research questions/knowledge gaps, priorities, and future directions in MCE research.
Highly illustrated synthesis of research on cold-water corals worldwide.
The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.
NOAA Technical Memorandum CRCP 11. Identifies goals, objectives, and approaches to guide NOAA's research, management, and international cooperation activities on deep-sea coral and sponge ecosystems for fiscal years 2010 through 2019. Integrates research and conservation needs and is intended to be a flexible, evolving document that allows NOAA and its partners to address new management challenges and priorities as appropriate. The primary goal of this Strategic Plan is to improve the understanding, conservation, and management of deep-sea coral and sponge ecosystems.
Deep-water coral reefs are found along large sections of the outer continental shelves and slopes of Europe, from North Cape to the Gulf of Cadiz, and because they also occur along the Atlantic seaboard of USA, the Gulf of Mexico, off Brazil, in the Mediterranean, and off New Zealand, they are currently being targeted by international groups of marine scientists. They have become popular and opportune deep-water research targets because they offer exciting frontier exploration, combined with a whole plethora of modern scientific methods, such as deep-sea drilling, sampling, remote control surveying and documentation. Furthermore they represent timely opportunities for further developments within the application of geochemistry, stable isotope research, bacterial sciences, including DNA-sequestering, and medical research (search for bioactive compounds). The Integrated Ocean Drilling Program (IODP) has arranged a deep-sea scientific drilling campaign on giant carbonate banks off Ireland. Because the reefs currently defy traditional marine-ecological theories, they represent future research opportunities and will enjoy scientific scrutiny for many years to come.
Dated June 2004
This timely volume provides a comprehensive account of the natural history of the organisms associated with the deep-sea floor and examines their relationship with this inhospitable environment--perhaps the most remote and least accessible location on the planet. The authors begin by describing the physical and chemical nature of the deep-sea floor and the methods used to collect and study its fauna. Then they discuss the ecology of the deep sea by exploring spatial patterns, diversity, biomass, vertical zonation, and large-scale distribution of organisms. Subsequent chapters review current knowledge of feeding, respiration, reproduction, and growth processes in these communities. The unique fauna of hypothermal vents and seeps are considered separately. Finally, there is a pertinent discussion of human exploitation of deep-sea resources and potential use of this environment for waste disposal.