Download Free Biological Treatment Of Solid Waste Book in PDF and EPUB Free Download. You can read online Biological Treatment Of Solid Waste and write the review.

This title includes a number of Open Access chapters. Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Biological Treatment of Solid Waste: Enhancing Sustainability reviews several technologies that help communities manage solid waste sustainably, while at the same time gen
Offering a comprehensive approach, this title covers fundamentals, technologies, and management of biological processing of solid waste. It discusses kinetic modeling and synergistic impact evolution during bioprocessing of solid waste, environmental impacts such as greenhouse gas emission from biological processing of solid waste, energy recovery from solid waste, and biodrying of solid waste. It also presents cases and challenges from different countries, successful business models, and economic analyses of various processing options. Aimed at researchers and industry professionals in solid and hazardous waste management, this title offers a wealth of knowledge to help readers understand this increasingly important area.
FROM THE PREFACE The main objective of composting is to transform organic materials into a stable usable product. Often organic materials which may have limited beneficial use in their raw state or have regulatory disposal constraints can be transformed by composting into marketable products. The limits on beneficial reuse may be regulations or they may be due to the potential for materials to be putrescible or pathogenic. Composting can be a solution for each of these. The implementation of composting on a large scale (in contrast to home or backyard composting) involves materials handling. Technological implementation of composting must be consistent with the biological demand of the system. If the biological system is violated, conditions will not be optimized for composting, and problems such as odor generation, insufficient aeration or moisture, or a combination of these conditions may result. Past problems and closure of facilities have been largely due to violations of the biological systems. Product quality with respect to particle size, inclusions, moisture content and other physical aspects are a function of engineering design. A well designed system must have the biological and engineering principles in harmony at all times.
The collection, transportation and subsequent processing of waste materials is a vast field of study which incorporates technical, social, legal, economic, environmental and regulatory issues. Common waste management practices include landfilling, biological treatment, incineration, and recycling – all boasting advantages and disadvantages. Waste management has changed significantly over the past ten years, with an increased focus on integrated waste management and life-cycle assessment (LCA), with the aim of reducing the reliance on landfill with its obvious environmental concerns in favour of greener solutions. With contributions from more than seventy internationally known experts presented in two volumes and backed by the International Waste Working Group and the International Solid Waste Association, detailed chapters cover: Waste Generation and Characterization Life Cycle Assessment of Waste Management Systems Waste Minimization Material Recycling Waste Collection Mechanical Treatment and Separation Thermal Treatment Biological Treatment Landfilling Special and Hazardous Waste Solid Waste Technology & Management is a balanced and detailed account of all aspects of municipal solid waste management, treatment and disposal, covering both engineering and management aspects with an overarching emphasis on the life-cycle approach.
Handbook on Organic Waste for Biological Treatment, Liquid Manure into a Solid, Tomato Waste Water Treatment, Oxalic Acid from Jute Stick, Cotton Processing Waste, Fish Waste, Agro-Industrial Wastes, Bioconversion of Pretreated Wheat Straw and Sunflower Stalks to Ethanol, Agricultural Waste Treatment, Waste of Dehydrated Onion, Beef-Cattle Manure Slurry, Meat Meal and Algae for Calves, Wastes from Large Piggeries, Pig Waste, Oxytetracycline, Methane from Cattle Waste (Also Known as The Complete Book on Biological Waste Treatment and their Utilization) Biological Treatment is the recycling of humus, nutrients and/or energy from biological waste by means of aerobic (composting) or anaerobic (digesting) processing. Biological treatment is an important and integral part of any wastewater treatment plant that treats wastewater from either municipality or industry having soluble organic impurities or a mix of the two types of wastewater sources. Biological wastewater treatment is an important and integral step of wastewater treatment system and it treats wastewater coming from either residential buildings or industries etc. It is often called as Secondary Treatment process which is used to remove any contaminants that left over after primary treatment. Organic waste is material that is biodegradable and comes from either a plant or animal. Organic waste is usually broken down by other organisms over time and may also be referred to as wet waste. Most of the time, it's made up of vegetable and fruit debris, paper, bones and human waste which quickly disintegrate. Wastewater treatment is a process used to convert wastewater, which is water no longer needed or suitable for its most recent use, into an effluent that can be either returned to the water cycle with minimal environmental issues or reused. Expenditure on water and wastewater infrastructure in India is set to increase by 83% over the next five years, hitting an annual run rate of $16 billion by 2020. The utility market is set to top $14 billion within five years, while annual spending in the industrial sector will approach $2 billion. Spending on water supply will grow from $5.56 billion to $9.4 billion over the next five years. It will be a standard reference book for professionals, entrepreneurs, those studying and researching in this important area. TAGS Biological Treatment, Organic-Waste Treatment, Biological Treatment of Organic Waste, Biological Wastewater Treatment, Biological Treatment Plant or Organic Waste, Organic Solid Waste Biological Treatment, Biological Treatment Plant, Microorganisms in Organic Waste Disposal, Biological Treatment of Waste, Process for Biological Treatment of Organic Waste, Biological Treatment Process, Organic Waste Treatment, Organic Waste Recycling, Organic Waste Forms and Treatment Strategies, Biological Waste Treatment and Utilization, Transformation of Liquid Manure into Solid, Tomato Waste Water Treatment, Treatment of Wastewater from Peeled Tomato, Tomato Cleaning and Water Recycle, Preparation of Oxalic Acid from Jute Stick, Oxalic Acid Manufacture, Oxalic Acid from Jute Stick, Digestion of Cotton Processing Waste, Properties of Sorghum Stalk, Physical and Mechanical Properties of Sorghum Stalk, Biological Fermentation of Fish Waste, Fermentation of Fish Waste, Fermented Fish Waste, Fish Waste in Fermentation, Agro-industrial Wastes, Agro-industrial wastes utilization, Recycling of Agro-Industrial Wastes, Modelling of Agricultural Waste Treatments, Utilization of Waste of Dehydrated Onion, Utilization of Waste Products of Dehydrated Onion Industry, Palm Oil Mill Effluent Disposal on Land, Palm Oil Mill Effluent (POME), Palm Oil Mill Effluent (POME) Treatment, Waste Management in Palm Oil Mill, Management and Treatment of Wastes from Large Piggeries, treatment of wastes from piggeries, Treatment of Piggery Wastes, Management of Wastes from Pig, Piggery Waste Management, Tower Digestion of Pig Waste, Nutritive Value of Poultry Waste, Digestion of Rabbit and Pig Waste, Chemical Composition of Palm Oil Mill Effluent, Humic Substances from Composed Barks, Humic Substances from Decomposing Bark, Particle Size and Tomato Waste Digestion, Humic Acids on Hydrolysis of Potato Protein, Effects of Composts on Wheat Yields, Production of Oxytetracycline, Oxytetracycline Production, Production of oxytetracycline from agricultural wastes, Use of Manure in Fish Farming, Bacteria in Swine Waste, Poultry Waste Water as Broiler Feeds, Utilization of Indian Wastes in Livestock Feeds, Methane from Cattle Waste, Methane Production from Cattle Waste, Treatment of Milking Parlour Wastewater, Pig Liquid Manure, UASB Treatment of Wastes, Digestion of Poultry Litter, Beef-Cattle Manure Slurries, New small scale ideas for Biological Treatment, Business Ideas for Biological Treatment, How to start a Biological Treatment Plant, Start Your Own Biological Treatment Business, Biological Treatment Business Plan, Business plan for Organic Waste for Biological Treatment, Small Scale Industries in India, Organic Waste for Biological Treatment Based Small Business Ideas in India, Small Scale Industry You Can Start on Your Own, Business plan for small scale industries, Profitable Small Scale Manufacturing, How to Start a Small Business in India, Free Manufacturing Business Plans, Small and Medium Scale Manufacturing, Profitable Small Business Industries Ideas, Business ideas for Startup, Detailed Project Report on Biological Treatment, Project Report on Biological Treatment, Pre-Investment Feasibility Study on Oxytetracycline Production, Techno-Economic feasibility study on Oxytetracycline Production, Feasibility report on Piggery Waste Management, Free Project Profile on Piggery Waste Management, Project profile on Organic Waste for Biological Treatment, Download free project profile on Oxytetracycline Production
With specialized and succinct coverage, Concise Handbook of Waste Treatment Technologies provides readers with an integrated overview of various waste treatment technologies and related issues. Rather than dealing separately with each type of waste material, the book summarizes important waste treatments from a holistic perspective. Presents a comprehensive review of the most used terminologies and methods in waste management Explains how waste materials are treated and managed in a manner compatible with engineering, health, safety, and environmental regulations and laws Includes discussion of basic solid, liquid, and gaseous wastes Accessible to both specialists and non-specialists This guidebook is written for early career professionals, non-specialists, and specialists in environmental and chemical engineering and related disciplines seeking to understand proper waste and management and disposal techniques.
Waste materials in the solid form tend to be bulky and difficult to handle and transport. Its management could happen through physical, thermal, chemical or biological processing stages, with the exact sequence of and their operational optima being decided by the waste composition. In recent years, energy crisis and increased waste production have been undoubtedly major issues of concern. As we mentioned in the previous volume of this book, defining waste is crucial in terms of identifying the most adequate approach to recycle or recover resources from the waste. Various chemical, biochemical, and biological approaches are being investigated widely by researchers for waste valorization. Volume 2 of this book brings together the leading researchers working on solid waste management using biological and biochemical approaches.
Life is often considered to be a journey. The lifecycle of waste can similarly be considered to be a journey from the cradle (when an item becomes valueless and, usually, is placed in the dustbin) to the grave (when value is restored by creating usable material or energy; or the waste is transformed into emissions to water or air, or into inert material placed in a landfill). This preface provides a route map for the journey the reader of this book will undertake. Who? Who are the intended readers of this book? Waste managers (whether in public service or private companies) will find a holistic approach for improving the environmental quality and the economic cost of managing waste. The book contains general principles based on cutting edge experience being developed across Europe. Detailed data and a computer model will enable operations managers to develop data-based improvements to their systems. Producers oj waste will be better able to understand how their actions can influence the operation of environmentally improved waste management systems. Designers oj products and packages will be better able to understand how their design criteria can improve the compatibility of their product or package with developing, environmentally improved waste management systems. Waste data specialists (whether in laboratories, consultancies or environ mental managers of waste facilities) will see how the scope, quantity and quality of their data can be improved to help their colleagues design more effective waste management systems.
Current Developments in Biotechnology and Bioengineering: Solid Waste Management provides extensive coverage of new developments, state-of-the-art technologies, and potential future trends, reviewing the latest innovative developments in environmental biotechnology and bioengineering as they pertain to solid wastes, also revealing current research priority areas in solid waste treatment and management. The fate of solid wastes can be divided into three major areas, recycling, energy recovery, and safe disposal. From this foundation, the book covers such key areas as biotechnological production of value added products from solid waste, bioenergy production from various organic solid wastes, and biotechnological solutions for safe, environmentally-friendly treatment and disposal. The state of the art situation, potential advantages, and limitations are discussed, along with proposed strategies on how to overcome limitations. Reviews available bioprocesses for the production of bioproducts from solid waste Outlines processes for the production of energy from solid waste using biochemical conversion processes Lists various environmentally friendly treatments of solid waste and its safe disposal