Download Free Biological Functions For Information And Communication Technologies Book in PDF and EPUB Free Download. You can read online Biological Functions For Information And Communication Technologies and write the review.

By incorporating biologically-inspired functions into ICT, various types of new-generation information and communication systems can be created. Just some example of areas already benefiting from such design inspiration are network architectures, information processing, molecular communication, and complex network modeling for solving real world-problems. This book provides the theoretical basis for understanding these developments and explains their practical applications. Highlighted inserts appears throughout to help readers to understand the very latest topics in these emerging research fields. The book ends with a more philosophical discussion on how new ICT solutions can be found by looking at analogous systems in biology. This new way of thinking may help researchers and practitioners to apply innovative ideas in developing next-generation technologies.
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.
By incorporating biologically-inspired functions into ICT, various types of new-generation information and communication systems can be created. Just some example of areas already benefiting from such design inspiration are network architectures, information processing, molecular communication, and complex network modeling for solving real world-problems. This book provides the theoretical basis for understanding these developments and explains their practical applications. Highlighted inserts appears throughout to help readers to understand the very latest topics in these emerging research fields. The book ends with a more philosophical discussion on how new ICT solutions can be found by looking at analogous systems in biology. This new way of thinking may help researchers and practitioners to apply innovative ideas in developing next-generation technologies.
Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€"recombinant DNA, scanning tunneling microscopes, and moreâ€"are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€"for funding, effective information systems, and other supportâ€"of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
Cognitive Informatics (CI) is the science of cognitive information processing and its applications in cognitive computing. CI is a transdisciplinary enquiry of computer science, information science, cognitive science, and intelligence science that investigates into the internal information processing mechanisms and processes of the brain. Advances and engineering applications of CI have led to the emergence of cognitive computing and the development of Cognitive Computers (CCs) that reason and learn. As initiated by Yingxu Wang and his colleagues, CC has emerged and developed based on the transdisciplinary research in CI, abstract intelligence (aI), and denotational mathematics after the inauguration of the series of IEEE International Conference on Cognitive Informatics since 2002 at Univ. of Calgary, Stanford Univ., and Tsinghua Univ., etc. This volume in LNCS (subseries of Computational Intelligence), LNCI 323, edited by Y. Wang, D. Zhang, and W. Kinsner, presents the latest development in cognitive informatics and cognitive computing. The book focuses on the explanation of cognitive models of the brain, the layered reference model of the brain, the fundamental mechanisms of abstract intelligence, and the implementation of computational intelligence by autonomous inference and learning engines based on CCs.
Over the past few decades, devices and technologies have been significantly miniaturized from one generation to the next, providing far more potential in a much smaller package. The smallest of these recently developed tools are miniscule enough to be invisible to the naked eye. Nanotechnology: Concepts, Methodologies, Tools, and Applications describes some of the latest advances in microscopic technologies in fields as diverse as biochemistry, materials science, medicine, and electronics. Through its investigation of theories, applications, and new developments in the nanotechnology field, this impressive reference source will serve as a valuable tool for researchers, engineers, academics, and students alike.
Biologically Inspired Networking and Sensing: Algorithms and Architectures offers current perspectives and trends in biologically inspired networking, exploring various approaches aimed at improving network paradigms. Research contained within this compendium of research papers and surveys introduces researches in the fields of communication networks, performance modeling, and distributed computing to new advances in networking.
Satellite Communications Systems and Technology