Download Free Biological Complexity And The Dynamics Of Life Processes Book in PDF and EPUB Free Download. You can read online Biological Complexity And The Dynamics Of Life Processes and write the review.

The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry. The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems. In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo. The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.
A game-changing book on the origins of life, called the most important scientific discovery 'since the Copernican revolution' in The Observer.
The exponential increase in computing power in the late twentieth century has allowed researchers to gather, process and analyze large volumes of information and construct rational paradigms of systems. Life sciences are no exception and computing advances have led to the birth of fields such as functional genomics and bioinformatics and facilitated an expansion of our understanding of biological systems. Biological Systems: Complexity and Artificial Life is an essential primer on systems biology for biologists and researchers having a multidisciplinary background. The volume covers a variety of theoretical models explaining biological processes. The book starts with an introductory chapter on the classical molecular biology paradigm and progresses towards concepts related to enzyme kinetics, non equilibrium dynamics, cellular thermodynamics, molecular motion in cells and more. The book concludes with a philosophical note on the concept of the biological system.
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.
Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a "New Biology" approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Complexity has become a central topic in certain sectors of theoretical physics and chemistry (for example, in connection with nonlinearity and deterministic chaos). Also, mathematical measurements of complexity and formal characterizations of this notion have been proposed. The question of how complex systems can show properties that are different from those of their constituent parts has nurtured philosophical debates about emergence and reductionism, which are particularly important in the study of the relationship between physics, chemistry, biology and psychology. This book offers a good presentation of those topics through a truly interdisciplinary approach in which the philosophy of science and the specialized topics of certain sciences are put in a dialogue.
The unity of science has been a widely discussed issue both in the philosophy of science and within several sciences. Reductionism has often been seen as the means of bringing the different sciences to a fundamental unity by reference to some basic science, but it shows many limitations. Multidisciplinarity and interdisciplinarity have also been proposed as methodologies for attaining unity without underestimating the diversity of the sciences. This volume starts with a clarification of the possible meanings of this unity and then discusses the features of the mentioned approaches to unity, evaluating the success and the shortcomings of the unification programme among different sciences and within a single science. Contents: The General Framework: What Does ''The Unity of Science'' Mean? (E Agazzi); The Unity of Disunity (J Faye); Sciences of Nature and Sciences of Man: On a Difference between Natural Science and the Interpretive Sciences of Man (F Collin); Natural Sciences and Human Sciences (G M Prosperi); Overcoming Reductionism: Complexity, Reductionism, and the Unity of Science (J Ricard); The Consilience Approach to the Unity of Science (B Kanitscheider); The Unity Within a Single Science: The Problem of Unity in a Single Field of Science (A Cordero); The Unity of Particle Physics and Cosmology? The Case of the Cosmological Constant (J Mosterin); Is Quantum Mechanics a Universal Theory ? (B d''Espagnat); and other papers. Readership: Graduate students and academics in the philosophy of science.
To formalize the dynamics of living things is to search for invariants in a system that contains an irreducible aspect of “fuzziness”, because biological processes are characterized by their large statistical variability, and strong dependence on temporal and environmental factors. What is essential is the identification of what remains stable in a “living being” that is highly fluctuating. The use of mathematics is not limited to the use of calculating tools to simulate and predict results. It also allows us to adopt a way of thinking that is founded on concepts and hypotheses, leading to their discussion and validation. Instruments of mathematical intelligibility and coherence have gradually “fashioned” the view we now have of biological systems. Teaching and research, fundamental or applied, are now dependent on this new order known as Integrative Biology or Systems Biology.
Although remote sensing is recognized as a powerful tool, less attention has been given in the past to the use of thermal, and especially thermal infrared (TIR) remote sensing. TIR data is useful for understanding the fluxes and redistribution of materials as a key aspect of land surface processes and land-atmosphere inter-relationships. This book