Download Free Bioisosteres In Medicinal Chemistry Book in PDF and EPUB Free Download. You can read online Bioisosteres In Medicinal Chemistry and write the review.

Written with the practicing medicinal chemist in mind, this is the first modern handbook to systematically address the topic of bioisosterism. As such, it provides a ready reference on the principles and methods of bioisosteric replacement as a key tool in preclinical drug development. The first part provides an overview of bioisosterism, classical bioisosteres and typical molecular interactions that need to be considered, while the second part describes a number of molecular databases as sources of bioisosteric identification and rationalization. The third part covers the four key methodologies for bioisostere identification and replacement: physicochemical properties, topology, shape, and overlays of protein-ligand crystal structures. In the final part, several real-world examples of bioisosterism in drug discovery projects are discussed. With its detailed descriptions of databases, methods and real-life case studies, this is tailor-made for busy industrial researchers with little time for reading, while remaining easily accessible to novice drug developers due to its systematic structure and introductory section.
Written with the practicing medicinal chemist in mind, this is the first modern handbook to systematically address the topic of bioisosterism. As such, it provides a ready reference on the principles and methods of bioisosteric replacement as a key tool in preclinical drug development. The first part provides an overview of bioisosterism, classical bioisosteres and typical molecular interactions that need to be considered, while the second part describes a number of molecular databases as sources of bioisosteric identification and rationalization. The third part covers the four key methodologies for bioisostere identification and replacement: physicochemical properties, topology, shape, and overlays of protein-ligand crystal structures. In the final part, several real-world examples of bioisosterism in drug discovery projects are discussed. With its detailed descriptions of databases, methods and real-life case studies, this is tailor-made for busy industrial researchers with little time for reading, while remaining easily accessible to novice drug developers due to its systematic structure and introductory section.
A peptidomimetic is a small protein-like chain designed to mimic a peptide with adjusted molecular properties such as enhanced stability or biological activity. It is a very powerful approach for the generation of small-molecule-based drugs as enzyme inhibitors or receptor ligands. Peptidomimetics in Organic and Medicinal Chemistry outlines the concepts and synthetic strategies underlying the building of bioactive compounds of a peptidomimetic nature. Topics covered include the chemistry of unnatural amino acids, peptide- and scaffold-based peptidomimetics, amino acid-side chain isosteres, backbone isosteres, dipeptide isosteres, beta-turn peptidomimetics, proline-mimetics as turn inducers, cyclic scaffolds, amino acid surrogates, and scaffolds for combinatorial chemistry of peptidomimetics. Case studies in the hit-to-lead process, such as the development of integrin ligands and thrombin inhibitors, illustrate the successful application of peptidomimetics in drug discovery.
This first systematic treatment of the concept and practice of scaffold hopping shows the tricks of the trade and provides invaluable guidance for the reader's own projects. The first section serves as an introduction to the topic by describing the concept of scaffolds, their discovery, diversity and representation, and their importance for finding new chemical entities. The following part describes the most common tools and methods for scaffold hopping, whether topological, shape-based or structure-based. Methods such as CATS, Feature Trees, Feature Point Pharmacophores (FEPOPS), and SkelGen are discussed among many others. The final part contains three fully documented real-world examples of successful drug development projects by scaffold hopping that illustrate the benefits of the approach for medicinal chemistry. While most of the case studies are taken from medicinal chemistry, chemical and structural biologists will also benefit greatly from the insights presented here.
Advances in Triazole Chemistry reviews the ever-widening scope of triazole chemistry. Triazole is an exceptional structural motif with a range of applications across scientific disciplines, including materials science, organocatalysis, agrochemicals, and medicinal chemistry. These many applications of different classes of triazoles have promoted the development of a range of synthetic strategies over the past few years, which are presented here along with recent and ecofriendly methods for the synthesis of all types of triazoles. The book also reviews the recent notable applications in chemical ligation, peptidomimetics, carbohydrate chemistry, nanotechnology, and polymer and materials science. This comprehensive resource is ideal for researchers using triazoles in various disciplines, as well as chemists working in the pharmaceutical, polymer, and agrochemical industries. Includes coverage of the role triazoles play in DNA synthesis Features comprehensive information on 1,2,3-triazoles and 1,2,4-triazoles and their subclasses, synthesis, and applications Serves as an ideal reference for researchers and chemists interested in using triazole chemistry for functionalization, modification, and development of target products
Presenting both a panoramic introduction to the essential disciplines of drug discovery for novice medicinal chemists as well as a useful reference for veteran drug hunters, this book summarizes the state-of-the-art of medicinal chemistry. It covers key drug targets including enzymes, receptors, and ion channels, and hit and lead discovery. The book hen surveys a drug's pharmacokinetics and toxicity, with a solid chapter covering fundamental bioisosteres as a guide to structure-activity relationship investigations.
Stressing strategic and technological solutions to medicinal chemistry challenges, this book presents methods and practices for optimizing the chemical aspects of drug discovery. Chapters discuss benefits, challenges, case studies, and industry perspectives for improving drug discovery programs with respect to quality and costs. • Focuses on small molecules and their critical role in medicinal chemistry, reviewing chemical and economic advantages, challenges, and trends in the field from industry perspectives • Discusses novel approaches and key topics, like screening collection enhancement, risk sharing, HTS triage, new lead finding approaches, diversity-oriented synthesis, peptidomimetics, natural products, and high throughput medicinal chemistry approaches • Explains how to reduce design-make-test cycle times by integrating medicinal chemistry, physical chemistry, and ADME profiling techniques • Includes descriptive case studies, examples, and applications to illustrate new technologies and provide step-by-step explanations to enable them in a laboratory setting
Written by medicinal chemists and ADMET scientists with a combined experience of over 300 years this aid to discovering drugs provides detailed coverage on absorption, distribution, metabolism, excretion and toxicology issues associated with new drugs.
Chemoinformatics strategies to improve drug discovery results With contributions from leading researchers in academia and the pharmaceutical industry as well as experts from the software industry, this book explains how chemoinformatics enhances drug discovery and pharmaceutical research efforts, describing what works and what doesn't. Strong emphasis is put on tested and proven practical applications, with plenty of case studies detailing the development and implementation of chemoinformatics methods to support successful drug discovery efforts. Many of these case studies depict groundbreaking collaborations between academia and the pharmaceutical industry. Chemoinformatics for Drug Discovery is logically organized, offering readers a solid base in methods and models and advancing to drug discovery applications and the design of chemoinformatics infrastructures. The book features 15 chapters, including: What are our models really telling us? A practical tutorial on avoiding common mistakes when building predictive models Exploration of structure-activity relationships and transfer of key elements in lead optimization Collaborations between academia and pharma Applications of chemoinformatics in pharmaceutical research experiences at large international pharmaceutical companies Lessons learned from 30 years of developing successful integrated chemoinformatic systems Throughout the book, the authors present chemoinformatics strategies and methods that have been proven to work in pharmaceutical research, offering insights culled from their own investigations. Each chapter is extensively referenced with citations to original research reports and reviews. Integrating chemistry, computer science, and drug discovery, Chemoinformatics for Drug Discovery encapsulates the field as it stands today and opens the door to further advances.
Medicinal chemistry is a complex topic. Written in an easy to follow and conversational style, Basic Concepts in Medicinal Chemistry focuses on the fundamental concepts that govern the discipline of medicinal chemistry as well as how and why these concepts are essential to therapeutic decisions. The book emphasizes functional group analysis and the basics of drug structure evaluation. In a systematic fashion, learn how to identify and evaluate the functional groups that comprise the structure of a drug molecule and their influences on solubility, absorption, acid/base character, binding interactions, and stereochemical orientation. Relevant Phase I and Phase II metabolic transformations are also discussed for each functional group. Key features include: • Discussions on the roles and characteristics of organic functional groups, including the identification of acidic and basic functional groups. • How to solve problems involving pH, pKa, and ionization; salts and solubility; drug binding interactions; stereochemistry; and drug metabolism. • Numerous examples and expanded discussions for complex concepts. • Therapeutic examples that link the importance of medicinal chemistry to pharmacy and healthcare practice. • An overview of structure activity relationships (SARs) and concepts that govern drug design. • Review questions and practice problems at the end of each chapter that allow readers to test their understanding, with the answers provided in an appendix. Whether you are just starting your education toward a career in a healthcare field or need to brush up on your organic chemistry concepts, this book is here to help you navigate medicinal chemistry. About the Authors Marc W. Harrold, BS, Pharm, PhD, is Professor of Medicinal Chemistry at the Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA. Professor Harrold is the 2011 winner of the Omicron Delta Kappa "Teacher of the Year" award at Duquesne University. He is also the two-time winner of the "TOPS" (Teacher of the Pharmacy School) award at the Mylan School of Pharmacy. Robin M. Zavod, PhD, is Associate Professor for Pharmaceutical Sciences at the Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, where she was awarded the 2012 Outstanding Faculty of the Year award. Professor Zavod also serves on the adjunct faculty for Elmhurst College and the Illinois Institute of Technology. She currently serves as Editor-in-Chief of the journal Currents in Pharmacy Teaching and Learning.