Download Free Bioinspired Chemistry From Enzymes To Synthetic Models Book in PDF and EPUB Free Download. You can read online Bioinspired Chemistry From Enzymes To Synthetic Models and write the review.

The observation of Nature is an inexhaustible source of inspiration to promote innovations in chemistry. The bioinspired approach is a revolution in our paradigms because it is not based on what we can take to nature, but on what we can learn from it. Enzymatic systems involved in solar energy conversion (photosystem), hydrogen production (hydrogenases), dioxygen activation (oxydases et oxygenases), CO₂ reduction (CO dehydrogenase) use abundant and cheap starting material such as O₂, H₂O and CO₂. Inspiration of these biological systems is a solution to make our chemical processes greener. These are some of the many challenges that bioinspired chemistry is able to take up.A number of the recent developments in bioinspired chemistry are discussed, including some descriptions on the biological systems that are the source of inspiration. This book is a guide to where bioinspired chemistry will be in the near future and provides a thoughtful perspective on how bioinspiration could change our world.
Bioinorganic chemistry is an interdisciplinary research field which centers on metals in biology. Over the past few decades, advances in chemistry, biology as well as in spectroscopic methods have shed light on the role of copper in human pathologies and allowed the growing discovery of copper-containing biological systems. Following this trend, much effort is being constantly chanelled towards understanding these fundamental biological processes or enzymes. In addition, chemists are developing molecules to target copper or copper enzymes as therapeutic tools. On the other hand, inspired by the function of biological systems, small molecular weight complexes inspired by the active site of copper enzymes are being prepared and studied. These bioinspired complexes can function both as mechanistic tools and as functional catalysts for oxidative transformations.The seven chapters in this book, contributed by internationally recognized authors cover recent developments on these aspects illustrated by interdisciplinary fields from biology, chemistry, spectroscopy to bioinspired catalysis. It contains aspects ranging from human health issues (copper homeostasis in bacteria and the development of molecules as anticancer or antibacterial agents) to bioinspired catalysis.
Can we emulate nature's technology in chemistry? Through billions of years of evolution, Nature has generated some remarkable systems and substances that have made life on earth what it is today. Increasingly, scientists are seeking to mimic Nature's systems and processes in the lab in order to harness the power of Nature for the benefit of society. Bioinspiration and Biomimicry in Chemistry explores the chemistry of Nature and how we can replicate what Nature does in abiological settings. Specifically, the book focuses on wholly artificial, man-made systems that employ or are inspired by principles of Nature, but which do not use materials of biological origin. Beginning with a general overview of the concept of bioinspiration and biomimicry in chemistry, the book tackles such topics as: Bioinspired molecular machines Bioinspired catalysis Biomimetic amphiphiles and vesicles Biomimetic principles in macromolecular science Biomimetic cavities and bioinspired receptors Biomimicry in organic synthesis Written by a team of leading international experts, the contributed chapters collectively lay the groundwork for a new generation of environmentally friendly and sustainable materials, pharmaceuticals, and technologies. Readers will discover the latest advances in our ability to replicate natural systems and materials as well as the many impediments that remain, proving how much we still need to learn about how Nature works. Bioinspiration and Biomimicry in Chemistry is recommended for students and researchers in all realms of chemistry. Addressing how scientists are working to reverse engineer Nature in all areas of chemical research, the book is designed to stimulate new discussion and research in this exciting and promising field.
This book provides an overview of bioinspired metal-sulfur catalysis by covering structures, activities and model complexes of enzymes exhibiting metal sulphur moieties in their active center.
This book is part of a series of ongoing volumes in the Series on Chemistry, Energy and the Environment, edited by Karl Kadish and Roger Guilard. The current volume on Electrochemistry of Metalloporphyrins covers all aspects of porphyrin electrochemistry in nonaqueous media and should be of benefit and interest to beginning graduate students as well as experienced researchers in many fields of porphyrin chemistry where electrochemistry is known to play a key role in influencing properties of the compounds as well as mechanisms and biological functions. The first half of the book is aimed at non-experts in the field of electrochemistry who would like to begin studies on porphyrin electrochemistry or understand the literature on porphyrin electrochemistry and this is then followed by detailed examples of how changes in the central metal ion of a given metalloporphyrin will affect its redox properties. The scope of the work covers the period in the literature between the mid-1960s and mid-2022 and expands greatly upon several earlier reviews by the senior author which are no longer in print and were never accessible in electronic form. This is the only book of its kind in the field which covers the basic electrochemistry of metalloporphyrins as well as describes the published data as a function of the central metal ion, considering all elements in the periodic table.
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.
This book is indexed in Chemical Abstracts ServiceGreen Chemistry has evolved in response to several environmental issues in the second half of the last century, mostly due to the almost freely expanding chemical, petrochemical, and pharmaceutical industries. During the past two decades Green Chemistry grew rapidly and we can now consider this area as a mature and powerful field. Tremendous development has taken place in many important areas including renewable energy and resources, reaction environments, catalysis, synthesis, chemical biology, green polymers, and facile recycling. The combination of Green Chemistry with engineering, biology, toxicology, and physics will lead to novel interdisciplinary systems, which can now lift Green Chemistry to the next, advanced level.The editors have assembled authors among the best specialists of this growing area of research. This collection of reviews and perspectives provides an exciting vision of the more recent developments in Green Chemistry. The contents of this book illustrate the breath of the field and its role to address environmental issues. This volume will serve as a book of reference showing a panoramic view of the field and a preview of its future direction, as well as a book of inspiration for those aiming to further advance its frontiers. This volume emphasizes on the most recent developments in green catalysis, bio-sourced polymers and the study of continental organic matter for a better understanding of the carbon geochemical cycle.
Faced with the steady rise in energy costs, dwindling fossil fuel supplies, and the need to maintain a healthy environment - exploration of alternative energy sources is essential for meeting energy needs. Biological systems employ a variety of efficient ways to collect, store, use, and produce energy. By understanding the basic processes of biological models, scientists may be able to create systems that mimic biomolecules and produce energy in an efficient and cost effective manner. On May 14-15, 2007 a group of chemists, chemical engineers, and others from academia, government, and industry participated in a workshop sponsored by the Chemical Sciences Roundtable to explore how bioinspired chemistry can help solve some of the important energy issues the world faces today. The workshop featured presentations and discussions on the current energy challenges and how to address them, with emphasis on both the fundamental aspects and the robust implementation of bioinspired chemistry for energy.
This book is indexed in Chemical Abstracts Service'The present book displays the continuing broad interest in the area of Supramolecular Catalysis. It provides an excellent update to previous contributions in the field and will be highly beneficial reading for all students and researchers interested in the challenges faced in this domain of Supramolecular Chemistry.'Jean-Marie LehnNobel Laureate The construction of catalysts by supramolecular forces has recently become a powerful tool and the role of noncovalent interactions can assist in designing new tools for the construction of effective and selective catalytic systems. It is unquestionably, vastly important to understand how different noncovalent interactions can be controlled or manipulated under appropriate reaction conditions. Supramolecular catalysts have had a tremendous impact on the syntheses of both chemical commodities and fine chemicals over the last 50 years, leading to the discovery of new reactions that were previously deemed impossible. This means that supramolecular chemistry plays a predominant role in accelerating or understanding chemical reactions.This book which addresses the above points is written by some of the leading contributors in this field and is intended for graduate students, researchers and academics working in supramolecular chemistry, organic chemistry, inorganic chemistry, and physical chemistry as well as researchers with an interest in the area of catalysis. The authors give examples illustrating the growth of the field, especially with special emphasis on new results published over the last decade. They also provide an explanation of fundamentals and topical research.
Layered Double Hydroxides (LDH) are two-dimensional materials with unique physiochemical properties, which enable their use in a wide range of applications such as catalysis, biomaterials, energy, filler of polymeric composites, and water remediation.This book addresses basic aspects of LDH as the implementations in the methodologies based on density functional theory (DFT) to understand the properties and applications of LDHs, the synthetic methods to prepare LDHs and LDH based core-shell structures, and the swelling and exfoliation behaviors of LDH compounds. A relevant part of the book is devoted to consolidated and emerging applications of LDHs as catalysts in photocatalysis, electrocatalysis and water oxidation processes, as biomaterials and as functional fillers in food packaging. New advances on LDH are described with a keen eye on the past research.