Download Free Bioinformatics For Diagnosis Prognosis And Treatment Of Complex Diseases Book in PDF and EPUB Free Download. You can read online Bioinformatics For Diagnosis Prognosis And Treatment Of Complex Diseases and write the review.

The book introduces the bioinformatics tools, databases and strategies for the translational research, focuses on the biomarker discovery based on integrative data analysis and systems biological network reconstruction. With the coming of personal genomics era, the biomedical data will be accumulated fast and then it will become reality for the personalized and accurate diagnosis, prognosis and treatment of complex diseases. The book covers both state of the art of bioinformatics methodologies and the examples for the identification of simple or network biomarkers. In addition, bioinformatics software tools and scripts are provided to the practical application in the study of complex diseases. The present state, the future challenges and perspectives were discussed. The book is written for biologists, biomedical informatics scientists and clinicians, etc. Dr. Bairong Shen is Professor and Director of Center for Systems Biology, Soochow University; he is also Director of Taicang Center for Translational Bioinformatics.
Bioinformatics is an integrative field of computer science, genetics, genomics, proteomics, and statistics, which has undoubtedly revolutionized the study of biology and medicine in past decades. It mainly assists in modeling, predicting and interpreting large multidimensional biological data by utilizing advanced computational methods. Despite its enormous potential, bioinformatics is not widely integrated into the academic curriculum as most life science students and researchers are still not equipped with the necessary knowledge to take advantage of this powerful tool. Hence, the primary purpose of our book is to supplement this unmet need by providing an easily accessible platform for students and researchers starting their career in life sciences. This book aims to avoid sophisticated computational algorithms and programming. Instead, it focuses on simple DIY analysis and interpretation of biological data with personal computers. Our belief is that once the beginners acquire these basic skillsets, they will be able to handle most of the bioinformatics tools for their research work and to better understand their experimental outcomes. Our second title of this volume set In Silico Life Sciences: Medicine provides hands-on experience in analyzing high throughput molecular data for the diagnosis, prognosis, and treatment of monogenic or polygenic human diseases. The key concepts in this volume include risk factor assessment, genetic tests and result interpretation, personalized medicine, and drug discovery. This volume is expected to train readers in both single and multi-dimensional biological analysis using open data sets, and provides a unique learning experience through clinical scenarios and case studies.
The combination of molecular biology, engineering and bioinformatics has revolutionized our understanding of cancer revealing a tight correlation of the molecular characteristics of the primary tumor in terms of gene expression, structural alterations of the genome, epigenetics and mutations with its propensity to metastasize and to respond to therapy. It is not just one or a few genes, it is the complex alteration of the genome that determines cancer development and progression. Future management of cancer patients will therefore rely on thorough molecular analyses of each single case. Through this book, students, researchers and oncologists will obtain a comprehensive picture of what the first ten years of cancer genomics have revealed. Experts in the field describe, cancer by cancer, the progress made and its implications for diagnosis, prognosis and treatment of cancer. The deep impact on the clinics and the challenge for future translational research become evident.
This book comprehensively reviews various omics approaches like genomics, proteomics, transcriptomics, and metabolomics for understanding pulmonary disease at molecular and systems levels. The initial chapters present the pathogenesis of major pulmonary diseases, namely, obstructive diseases, restrictive diseases, vascular diseases, infectious diseases, and neoplastic carcinoma. The book chapters provide current information about the role of the microbiome and applications of medical imaging, bioinformatics tools, and databases for diagnosis and designing treatment strategies against complex lung diseases. Further, the book discusses omics technologies to identify biomarkers for the early diagnosis and prognosis of pulmonary diseases. Finally, the book elucidates the multi-omics approaches and data integration using mathematical modeling for insights into the disease etiology towards improving the prognostics and predictive accuracy of disease phenotypes. ​
Pharmacogenomics supports personalized medicine by translating genome-based knowledge into clinical practice, offering enhanced benefit for patients and health-care systems at large. Current routine practice for diagnosing and treating patients is conducted by correlating parameters such as age, gender and weight with risks and expected treatment outcomes. In the new era of personalized medicine the healthcare provider is equipped with improved ability to prevent, diagnose, treat and predict outcomes on the basis of complex information sources, including genetic and genomic data. Targeted therapy and reliable prediction of expected outcomes offer patients access to better healthcare management, by way of identifying the therapies effective for the relevant patient group, avoiding prescription of unnecessary treatment and reducing the likelihood of developing adverse drug reactions.
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.