Download Free Bioinformatics And Medical Applications Book in PDF and EPUB Free Download. You can read online Bioinformatics And Medical Applications and write the review.

BIOINFORMATICS AND MEDICAL APPLICATIONS The main topics addressed in this book are big data analytics problems in bioinformatics research such as microarray data analysis, sequence analysis, genomics-based analytics, disease network analysis, techniques for big data analytics, and health information technology. Bioinformatics and Medical Applications: Big Data Using Deep Learning Algorithms analyses massive biological datasets using computational approaches and the latest cutting-edge technologies to capture and interpret biological data. The book delivers various bioinformatics computational methods used to identify diseases at an early stage by assembling cutting-edge resources into a single collection designed to enlighten the reader on topics focusing on computer science, mathematics, and biology. In modern biology and medicine, bioinformatics is critical for data management. This book explains the bioinformatician’s important tools and examines how they are used to evaluate biological data and advance disease knowledge. The editors have curated a distinguished group of perceptive and concise chapters that presents the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to healthcare. Applying deep learning techniques for data-driven solutions in health information allows automated analysis whose method can be more advantageous in supporting the problems arising from medical and health-related information. Audience The primary audience for the book includes specialists, researchers, postgraduates, designers, experts, and engineers, who are occupied with biometric research and security-related issues.
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.
Translational bioinformatics (TBI) involves development of storage, analytics, and advanced computational methods to harvest knowledge from voluminous biomedical and genomic data into 4P healthcare (proactive, predictive, preventive, and participatory). Translational Bioinformatics Applications in Healthcare offers a detailed overview on concepts of TBI, biological and clinical databases, clinical informatics, and pertinent real-case applications. It further illustrates recent advancements, tools, techniques, and applications of TBI in healthcare, including Internet of Things (IoT) potential, toxin databases, medical image analysis and telemedicine applications, analytics of COVID-19 CT images, viroinformatics and viral diseases, and COVID-19–related research. Covers recent technologies such as Blockchain, IoT, and Big data analytics in bioinformatics Presents the role of translational bioinformatic methods in the field of viroinformatics, as well as in drug development and repurposing Includes translational healthcare and NGS for clinical applications Illustrates translational medicine systems and their applications in better healthcare Explores medical image analysis with focus on CT images and novel coronavirus disease detection Aimed at researchers and graduate students in computational biology, data mining and knowledge discovery, algorithms and complexity, and interdisciplinary fields of studies, including bioinformatics, health-informatics, biostatistics, biomedical engineering, and viroinformatics. Khalid Raza is an Assistant Professor, the Department of Computer Science, Jamia Millia Islamia (Central University), New Delhi. His research interests include translational bioinformatics, computational intelligence methods and its applications in bioinformatics, viroinformatics, and health informatics. Nilanjan Dey is an Associate Professor, the Department of Computer Science and Engineering, JIS University, Kolkata, India. His research interests include medical imaging, machine learning, computer-aided diagnosis, and data mining.
The practice of modern medicine requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and conduct research. Designed for a broad audience, this book fills the need for a high quality reference in computers and medicine, first explaining basic concepts, then illustrating them with specific systems and technologies. Medical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline. The second edition covers system design and engineering, ethics of health informatics, system evaluation and technology assessment, public health and consumer use of health information, and healthcare financing.
Medical science and practice have undergone fundamental changes in the last 5 years, as large-scale genome projects have resulted in the sequencing of a number of important microbial, plant and animal genomes. This book aims to combine industry standard software engineering and design principles with genomics, bioinformatics and cancer research. Rather than an exercise in learning a programming platform, the text focuses on useful analytical tools for the scientific community.
Translational Bioinformatics in Healthcare and Medicine offers an overview of main principles of bioinformatics, biological databases, clinical informatics, health informatics, viroinformatics and real-case applications of translational bioinformatics in healthcare. Written by experts from both technology and clinical sides, the content brings together essential knowledge to make the best of recent advancements of the field. The book discusses topics such as next generation sequence analysis, genomics in clinical care, IoT applications, blockchain technology, patient centered interoperability of EHR, health data mining, and translational bioinformatics methods for drug discovery and drug repurposing. In addition, it discusses the role of bioinformatics in cancer research and viroinformatics approaches to counter viral diseases through informatics. This is a valuable resource for bioinformaticians, clinicians, healthcare professionals, graduate students and several members of biomedical field who are interested in learning more about how bioinformatics can impact in their research and practice. Covers recent advancements in translational bioinformatics and its healthcare applications Discusses integrative and multidisciplinary approaches to U-healthcare systems development and management Bridges the gap among various knowledge domains in the field, integrating both technological and clinical knowledge into practical content
The practice of modern medicine and biomedical research requires sophisticated information technologies with which to manage patient information, plan diagnostic procedures, interpret laboratory results, and carry out investigations. Biomedical Informatics provides both a conceptual framework and a practical inspiration for this swiftly emerging scientific discipline at the intersection of computer science, decision science, information science, cognitive science, and biomedicine. Now revised and in its third edition, this text meets the growing demand by practitioners, researchers, and students for a comprehensive introduction to key topics in the field. Authored by leaders in medical informatics and extensively tested in their courses, the chapters in this volume constitute an effective textbook for students of medical informatics and its areas of application. The book is also a useful reference work for individual readers needing to understand the role that computers can play in the provision of clinical services and the pursuit of biological questions. The volume is organized so as first to explain basic concepts and then to illustrate them with specific systems and technologies.
"This book provides a compendium of terms, definitions, and explanations of concepts, processes, and acronyms"--Provided by publisher.
Informatics and technology have become an intrinsic part of healthcare management in recent years; it is almost impossible to imagine a modern healthcare system without them. This book presents the proceedings of the 14th annual International Conference on Informatics, Management and Technology in Healthcare (ICIMTH), held in Athens, Greece, in July 2016. The conference treats the field of biomedical informatics in a very broad framework, and the 68 full papers included here examine the research and applications outcomes of informatics from cell to population, including a number of technologies such as imaging, sensors, mobile communications, biomedical equipment and management, as well as legal and societal issues related to the application of health informatics. The book is divided into sections: Biomedical Technology; Clinical Informatics; E-learning and Education; Formalisation of Knowledge, Ontologies, Clinical Guidelines and Standards of Healthcare; Health Informatics; Healthcare Management and Public Health; mHealth and Telemedicine; and Social Media and Health. Also included are two keynote speeches. Covering a wide spectrum of applications, the book will be of interest to all those working in the design, management and delivery of healthcare services whose work involves the development or use of biomedical informatics.
Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.