Download Free Biohydrogen Ii Book in PDF and EPUB Free Download. You can read online Biohydrogen Ii and write the review.

Hydrogen is an almost ideal fuel and its wider use will result in an improvement in the environment due to factors including decreased air pollution. Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. The papers presented within this volume enhance and expand upon presentations made at the "Workshop on Biohydrogen 99", Tsukuba, Japan. The contents evaluate the current status of Biohydrogen research worldwide and consider future research directions.Contributions from leading international experts cover the breadth of Biohydrogen R and D, from production to genetic engineering and molecular biology. This volume is designed to be an invaluable resource for researchers and other professionals who wish to obtain an overview of Biohydrogen R and D.
Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. - Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges - Presents real-life application of conversion technologies and their integration in existing systems - Includes the most promising pathways for sustainable hydrogen production for energy applications
"Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change, environmental degradation, and health problems1. J.O.'.M. Bockris, The origin of ideas on a hydrogen economy and its so"
Hydrogen is an almost ideal fuel and its wider use will result in an improvement in the environment due to factors including decreased air pollution. Hydrogen is the element of greatest abundance in the universe; however, its production from renewable resources remains a major challenge. The papers presented within this volume enhance and expand upon presentations made at the "Workshop on Biohydrogen 2002". Biohydrogen III evaluates the current status of Biohydrogen research worldwide and consider future research directions. - Important research on new fuel opportunities - 15 contributions from the world's leading experts
In a multidisciplinary field such as energy, Hydrogen and Fuel Cells stands out by covering the entire width of hydrogen production and usage technologies, giving detailed descriptions of not just one but the range of very different fuel cells that have been developed or are under development. In one volume, respected experts Bent Sorensen and Giuseppe Spazzafumo provide all the basic scientific theory underlying hydrogen and fuel cell technologies, but at the same time present applications and sustainable integration into society in a way accessible to a broad range of people working in this field, whether in technical, economic or management roles. The third edition reflects both recently emerged technologies and the market penetration of the most promising technologies, and it gives an appraisal of how far fuel cell technology may go in the future, considering current challenges and economic trends. This new edition has updated and expanded content on hydrogen storage and transmission, molten carbonate fuel cells, PEM fuel cells, solid oxide fuel cells, biofuel cells, including microbial fuel cells, applications in transportation and power plants, future scenarios and life-cycle assessment. It is ideal for researchers and professionals in the field of energy, and renewable energy in particular, both in academia and industry. It is also useful to lecturers and graduate students in engineering, physics, and environmental sciences, as well as professionals involved in energy or environmental regulation and policy. - Gain thorough understanding of the science and applications of hydrogen and a range of different fuel cells, including economic and social aspects of the field - Updated sections include hydrogen storage and transportation, biofuel cells, PEM and solid oxide fuel cells, applications in transportation and large scale power generation, and life-cycle assessment
This book discusses various renewable energy resources and technologies. Topics covered include recent advances in photobioreactor design; microalgal biomass harvesting, drying, and processing; and technological advances and optimised production systems as prerequisites for achieving a positive energy balance. It highlights alternative resources that can be used to replace fossil fuels, such as algal biofuels, biodiesel, bioethanol, and biohydrogen. Further, it reviews microbial technologies, discusses an immobilization method, and highlights the efficiency of enzymes as a key factor in biofuel production. In closing, the book outlines future research directions to increase oil yields in microalgae, which could create new opportunities for lipid-based biofuels, and provides an outlook on the future of global biofuel production. Given its scope, the book will appeal to all researchers and engineers working in the renewable energy sector.
Concerns over dwindling fossil fuel reserves and impending climate changes have focused attention worldwide on the need to discover alternative, sustainable energy sources and fuels. Biofuels, already produced on a massive industrial scale, are seen as one answer to these problems. However, very real concerns over the effects of biofuel production on food supplies, with some of ht recent increases in worldwide food costs attributable to biofuel production, have lead to the realization that new, non-food substrates for biofuel production must be bought online. This book is an authoritative, comprehensive, up-to-date review of the various options under development for the production of advanced biofuels as alternative energy sources. A general overview and introductory chapters for each section place the field in the context as well as provide essential basic notions for the more general reader. Accomplished, internationally recognized experts carrying out research on individual focus areas contribute specific technical chapters detailing present progress and future prospects.
This book provides an updated knowledge on the biohydrogen production from industrial and municipal organic waste materials. Microbes are increasingly being included in the hydrogen based biofuel production and this book covers the processes and protocols for biohydrogen production. There is an urgent need of alternative energy research to fulfill the global energy demand. Biohydrogen is a promising source of sustainable and clean energy as it harnessed by biological means. Biohydrogen may be produced by utilizing different waste materials as a substrate, and by optimization of various parameters of bioreactors such as temperature, pH, partial pressure etc. The waste materials used in hydrogen production are categorized as agricultural waste, municipal waste, industrial waste, and other hazardous wastes. Biohydrogen production from wastes materials opened a new opportunity for the widespread use of everlasting renewable energy source. This book is useful for professional scientists, academicians, biotechnologist and environmentalist along with research scholars in various biotechnology and bioenergy industries by addressing the latest research going on in the field of renewal bioenergy production from waste and their global impact on the environment.
Hydrogen has been an important feedstock for various industries, and its global market is already valued at hundreds of billions of dollars per year. It is also playing additional roles as a clean alternative energy carrier for power generation and as a crucial feedstock in the bioeconomy. This Special Issue “Hydrogen Production Technologies” highlights different thermochemical, electrochemical, and biological technologies such as high- and low-temperature electrolyzers, microchannel reactors, sorption-enhanced reactors, multi-tubular solar reactors, and anaerobic digestors. It also covers other aspects ranging from reactor design, hydrogen storage, and process analysis of different alternatives.