Download Free Biogeochemical Applications Of Compound Specific Radiocarbon Analysis Book in PDF and EPUB Free Download. You can read online Biogeochemical Applications Of Compound Specific Radiocarbon Analysis and write the review.

Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. - Features up-to-date knowledge of DOM, including five new chapters - The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea - Includes chapters that address inputs from freshwater terrestrial DOM
Elements of Physical Oceanography is a derivative of the Encyclopedia of Ocean Sciences, 2nd Edition and serves as an important reference on current physical oceanography knowledge and expertise in one convenient and accessible source. Its selection of articles—all written by experts in their field—focuses on ocean physics, air-sea transfers, waves, mixing, ice, and the processes of transfer of properties such as heat, salinity, momentum and dissolved gases, within and into the ocean. Elements of Physical Oceanography serves as an ideal reference for topical research. References related articles in physical oceanography to facilitate further research Richly illustrated with figures and tables that aid in understanding key concepts Includes an introductory overview and then explores each topic in detail, making it useful to experts and graduate-level researchers Topical arrangement makes it the perfect desk reference
The Treatise on Geochemistry is the first work providing a comprehensive, integrated summary of the present state of geochemistry. It deals with all the major subjects in the field, ranging from the chemistry of the solar system to environmental geochemistry. The Treatise on Geochemistry has drawn on the expertise of outstanding scientists throughout the world, creating the reference work in geochemistry for the next decade. Each volume consists of fifteen to twenty-five chapters written by recognized authorities in their fields, and chosen by the Volume Editors in consultation with the Executive Editors. Particular emphasis has been placed on integrating the subject matter of the individual chapters and volumes. Elsevier also offers the Treatise on Geochemistry in electronic format via the online platform ScienceDirect, the most comprehensive database of academic research on the Internet today, enhanced by a suite of sophisticated linking, searching and retrieval tools.
A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.
The pace of revolution in analytical chemistry in the field of Geosciences has been dramatic over recent decades and includes fundamental developments that have become common place in many related and unrelated disciplines. The analytical tools (nano to macro-scale from stable to radioactive isotopes, compound specific sulfur isotopes) used have been applied to wide-ranging applications from inorganic to organic geochemistry, biodiversity and chronological tools, to build an understanding of how the Earth system evolved to its present state. This book will provide an essential guide to exploring the earth’s natural resources and changing climate by detection science. Individual chapters bring together expertise from across the globe to present a comprehensive outlook on the analytical technologies available to the geoscientist today. Experienced researchers will appreciate the broad treatment of the subject as a valuable reference, while students and those new to the field will quickly gain an appreciation of both the techniques at hand, and the importance of constructing, and analysing, the complex data sets they can generate.
This book is a useful guide for researchers in ecology and earth science interested in the use of accelerator mass spectrometry technology. The development of research in radiocarbon measurements offers an opportunity to address the human impact on global carbon cycling and climate change. Presenting radiocarbon theory, history, applications, and analytical techniques in one volume builds a broad outline of the field of radiocarbon and its emergent role in defining changes in the global carbon cycle and links to climate change. Each chapter presents both classic and cutting-edge studies from different disciplines involving radiocarbon and carbon cycling. The book also includes a chapter on the history and discovery of radiocarbon, and advances in radiocarbon measurement techniques and radiocarbon theory. Understanding human alteration of the global carbon cycle and the link between atmospheric carbon dioxide levels and climate remains one of the foremost environmental problems at the interface of ecology and earth system science. Many people are familiar with the terms ‘global warming’ and ‘climate change’, but fewer are able to articulate the science that support these hypotheses. This book addresses general questions such as: what is the link between the carbon cycle and climate change; what is the current evidence for the fate of carbon dioxide added by human activities to the atmosphere, and what has caused past changes in atmospheric carbon dioxide? How can the radiocarbon and stable isotopes of carbon combined with other tools be used for quantifying the human impact on the global carbon cycle?
MULTI-SCALE BIOGEOCHEMICAL PROCESSES IN SOIL ECOSYSTEMS Provides a state-of-the-art overview of research in soil biogeochemical processes and strategies for greenhouse gas mitigation under climate change Food security and soil health for the rapidly growing human population are threatened by increased temperature and drought, soil erosion and soil quality degradation, and other problems caused by human activities and a changing climate. Because greenhouse gas emission is the primary driver of climate change, a complete understanding of the cycles of carbon and major nutritional elements is critical for developing innovative strategies to sustain agricultural development and environmental conservation. Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is an up-to-date overview of recent research in soil biogeochemical processes and applications in ecosystem management. Organized into three parts, the text examines molecular-scale processes and critical reactions, presents ecosystem-scale studies of ecological hotspots, and discusses large-scale modeling and prediction of global biogeochemical cycles. Part of the Wiley - IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, this authoritative volume: Provides readers with a systematic and interdisciplinary approach to sustainable agricultural development and management of soil ecosystems in a changing climate Features contributions from an international team of leading scientists Examines topics such as soil organic matter stabilization, soil biogeochemistry modeling, and soil responses to environmental changes Discusses strategies for mitigating greenhouse gas emission and improving soil health and ecosystems resilience Includes an introduction to working across scales to project soil biogeochemical responses to climatic change Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes is essential reading for scientists, engineers, agronomists, chemists, biologists, academic researchers, consultants, and other professionals whose work involves the nutrient cycle, ecosystem management, and climate change.
The oceans cover 70% of the Earth’s surface, and are critical components of Earth’s climate system. This new edition of Encyclopedia of Ocean Sciences, Six Volume Set summarizes the breadth of knowledge about them, providing revised, up to date entries as well coverage of new topics in the field. New and expanded sections include microbial ecology, high latitude systems and the cryosphere, climate and climate change, hydrothermal and cold seep systems. The structure of the work provides a modern presentation of the field, reflecting the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief. In this framework maximum attention has been devoted to making this an organic and unified reference. Represents a one-stop. organic information resource on the breadth of ocean science research Reflects the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief New and expanded sections include microbial ecology, high latitude systems and climate change Provides scientifically reliable information at a foundational level, making this work a resource for students as well as active researches