Download Free Biofuels Production From Lignocellulosic Materials Book in PDF and EPUB Free Download. You can read online Biofuels Production From Lignocellulosic Materials and write the review.

Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book's comprehensive overview. - Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass - Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion - Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes
The book describes the pretreatment of lignocellulosic biomass for biomass-to-biofuel conversion processes, which is an important step in increasing ethanol production for biofuels. It also highlights the main challenges and suggests possible ways to make these technologies feasible for the biofuel industry. The biological conversion of cellulosic biomass into bioethanol is based on the chemical and biological breakdown of biomass into aqueous sugars, for example using hydrolytic enzymes. The fermentable sugars can then be further processed into ethanol or other advanced biofuels. Pretreatment is required to break down the lignin structure and disrupt the crystalline structure of cellulose so that the acids or enzymes can easily access and hydrolyze the cellulose. Pre-treatment can be the most expensive process in converting biomass to fuel, but there is great potential for improving the efficiency and lowering costs through further research and development. This book is aimed at academics and industrial practitioners who are interested in the higher production of ethanol for biofuels.
Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass
Biomass Fractionation Technologies for a Lignocellulosic Feedstock-based Biorefinery reviews the extensive research and tremendous scientific and technological developments that have occurred in the area of biorefinering, including industrial processes and product development using 'green technologies', often referred as white biotechnology. As there is a huge need for new design concepts for modern biorefineries as an alternative and amendment to industrial crude oil and gas refineries, this book presents the most important topics related to biomass fractionation, including advances, challenges, and perspectives, all with references to current literature for further study. Presented in 26 chapters by international field specialists, each chapter consists of review text that comprises the most recent advances, challenges, and perspectives for each fractionation technique. The book is an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Reviews numerous valuable products from lignocellulose - Discusses integration of processes for complete biomass conversion with minimum waste generation - Identifies the research gaps in scale-up - Presents an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation
A text to the advances and development of novel technologies in the production of high-value products from economically viable raw materials Lignocellulosic Biorefining Technologiesis an essential guide to the most recent advances and developments of novel technologies in the production of various high-value products from economically viable raw materials. Written by a team of experts on the topic, the book covers important topics specifically on production of economical and sustainable products such as various biofuels, organic acids, enzymes, biopigments, biosurfactants, etc. The book highlights the important aspects of lignocellulosic biorefining including structure, function, and chemical composition of the plant cell wall and reviews the details about the various components present in the lignocellulosic biomass and their characterizations. The authors explore the various approaches available for processing lignocellulosic biomass into second generation sugars and focus on the possibilities of utilization of lignocellulosic feedstocks for the production of biofuels and biochemicals. Each chapter includes a range of clear, informative tables and figures, and contains relevant references of published articles. This important text: Provides cutting-edge information on the recent developments in lignocellulose biorefinery Reviews production of various economically important and sustainable products, such as biofuels, organic acids, biopigments, and biosurfactants Highlights several broad-ranging areas of recent advances in the utilization of a variety of lignocellulosic feedstocks Provides a valuable, authoritative reference for anyone interested in the topic Written for post-graduate students and researchers in disciplines such as biotechnology, bioengineering, forestry, agriculture, and chemical industry, Lignocellulosic Biorefining Technologies is an authoritative and updated guide to the knowledge about various biorefining technologies.
This volume provides the technical information required for the production of biofuels and chemicals from lignocellulosic biomass. It starts with a brief overview of the importance, applications, and production processes of different lignocellulosic products. Further chapters review the perspectives of waste-based biofuels and biochemicals; the pretreatment of lignocellulosic biomass for biofuel production; cellulolytic enzyme systems for the hydrolysis of lignocelluloses; and basic and applied aspects of the production of bioethanol, biogas, biohydrogen, and biobutanol from lignocelluloses. This book is recommended for researchers and engineers and particularly students taking biofuel courses at graduate level.
Energy Global energy demand has more than doubled since 1970. The use of energy is strongly related to almost every conceivable aspect of development: wealth, health, nutrition, water, infrastructure, education and even life expectancy itself are strongly and significantly related to the consumption of energy per capita. Many development indicators are strongly related to per-capita energy consumption. Fossil fuel is the most conventional source of energy but also increases greenhouse gas emissions. The economic development of many countries has come at the cost of the environment. However, it should not be presumed that a reconciliation of the two is not possible. The nexus concept is the interconnection between the resource energy, water, food, land, and climate. Such interconnections enable us to address trade-offs and seek synergies among them. Energy, water, food, land, and climate are essential resources of our natural environment and support our quality of life. Competition between these resources is increasing globally and is exacerbated by climate change. Improving resilience and securing resource availability would require improving resource efficiency. Many policies and programs are announced nationally and internationally for replacing the conventional mode and also emphasizing on conservation of fossil fuels and reuse of exhausted energy, so a gap in implications and outcomes can be broadly traced by comparing the data. This book aims to highlight problems and solutions related to conventional energy utilization, formation, and multitudes of ecological impacts and tools for the conservation of fossil fuels. The book also discusses modern energy services as one of the sustainable development goals and how the pressure on resource energy disturbs the natural flows. The recent advances in alternative energy sources and their possible future growth are discussed and on how conventional energy leads to greenhouse gas formation, which reduces energy use efficiency. The different policies and models operating is also addressed, and the gaps that remained between them. Climate change poses a challenge for renewable energy, and thus it is essential to identify the factors that would reduce the possibility of relying on sustainable energy sources. This book will be of interest to researchers and stakeholders, students, industries, NGOs, and governmental agencies directly or indirectly associated with energy research.
Biofuels Production from Lignocellulosic Materials presents the latest scientific and technical advances in the bioprocessing of lignocellulosic materials for disposal, resource recovery, and biofuel and bioenergy production. The book emphasizes the main chemical and biological properties of lignocellulosic materials, its pre-treatment, emerging nutrient recovery technologies, the role of microbial biotechnology in lignocellulosic materials management, and the sustainable use of biofuel for anthropogenic activities to fulfil energy demand. Lignocellulose biorefinery outcomes are examined from multiple perspectives, including applied chemical, mechanical, and enzymatic pre-treatments technologies, and cost-effective and energy-efficient options for developing high value-added products. This is a valuable reference for scientists, researchers, engineers, and industrial practitioners, as well as graduate and postgraduate students working on the utilization of lignocellulosic materials. - Explores sustainable resource recovery and utilization of lignocellulosic materials for technology development within organic waste recycling and disposal - Critically discusses the development of industrial sustainable bioprocessing of lignocellulosic materials and market demand of bioenergy and biofuel production - Examines industrial applications of biological and thermochemical lignocellulosic materials recycling towards emerging nutrient recovery technologies
Value-Chain of Biofuels: Fundamentals, Technology, and Standardization presents the fundamental aspects of biofuel production, from biomass conversion technologies and biofuels' end products to related policy regulation and standardization. Sections explore the current biofuels industry, addressing pretreatment, feedstocks, and conversion processes, review different pathways to produce biofuels, including bioethanol, biochar, biogas/bio-hydrogen, bio-oil, biodiesel, and many others, and finally, present policy regulation and standardization on biofuel production, with a focus on applications. Case studies are provided alongside reviews from academic and industry perspectives, discussing economics and lifecycle assessments (LCA) of biofuel production, as well as analyses of supply chains. Offering a comprehensive and timely overview, this book provides an ideal reference for researchers and practitioners working in bioenergy and renewable energy, but it will also be of interest to chemists, bioengineers, chemical engineers, and the agricultural and petrochemical industries. - Helps readers gain academic and industry perspectives on biofuel production with the inclusion of lab-based experimentation and informative case studies - Contains an exhaustive analysis of biomass conversion technologies for biofuels and biochemicals - Provides a clear and concise text that avoids the overuse of jargon and technical language
Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery.