Download Free Bioethanol Book in PDF and EPUB Free Download. You can read online Bioethanol and write the review.

Bioethanol is a versatile transportation fuel and fuel additive that offers excellent performance and reduced air pollution compared to conventional fuels. Its production and use adds little, if any, net release of carbon dioxide to the atmosphere, dramatically reducing the potential for global climate change. Through a sustained research program and an emerging economic competitiveness, the technology for bioethanol production is poised for immediate widespread commercial applications. Written by engineers and scientists providing a technical focus, this handbook provides the up-to-date information needed by managers, engineers, and scientists to evaluate the technology, market, and economics of this fuel, while examining the development of production required to support its commercial use.
Global Bioethanol: Evolution, Risks, and Uncertainties explores the conceptual and methodological approaches for the understanding of bioethanol technologies, policies and future perspectives. After a decade of huge investments made by big companies and governments all around the world, it is time to talk about the real conditions in which bioethanol will (or will not) evolve. Uncertainties and certainties are discussed and addressed to understand the futures of global bioethanol. The book analyses the evolution of bioethanol in the world's energy mix under technological, economic and commercial perspectives. It gives particular emphasis on the innovative trajectories of second-generation ethanol and their potential in different countries and regions. Future scenarios are proposed in order to evaluate the possible outcomes of ethanol in a global perspective. For providing a thorough overview of the bioethanol sector from different points of view, this book is a very useful resource for all involved with biofuels in general and bioethanol in particular, including energy engineers, researchers, consultants, analysts and policy makers. - Presents a thorough examination of the uncertainties surrounding bioethanol in the future global energy mix - Provides a data-driven and updated picture on the technological, economic, and market trends and scenarios for bioethanol - Offers a foresight analysis on the perspectives of bioethanol as a global commodity - Includes a prospective about who is going to lead the new trajectories in the global arena
Bioethanol is a versatile transportation fuel and fuel additive that offers excellent performance and reduced air pollution compared to conventional fuels. Its production and use adds little, if any, net release of carbon dioxide to the atmosphere, dramatically reducing the potential for global climate change. Through a sustained research program and an emerging economic competitiveness, the technology for bioethanol production is poised for immediate widespread commercial applications. Written by engineers and scientists providing a technical focus, this handbook provides the up-to-date information needed by managers, engineers, and scientists to evaluate the technology, market, and economics of this fuel, while examining the development of production required to support its commercial use.
This book provides an updated and detailed overview on the recent developments of bioethanol technology. It looks at the historical perspectives, chemistry, sources and production of ethanol and discusses biotechnology breakthroughs and promising developments, its uses, advantages, problems, environmental effects and characteristics. In addition, it presents information about ethanol in different parts of the world and also highlights the challenges and future of ethanol. The first edition of this book was published as a SpringerBriefs in 2013. Since then, many new developments have taken place in the last six years. This new edition will highlight the evolution in bioethanol development from first-generation production to the futuristic fourth-generation bioethanol production, the various constraints and challenges involved, and the scope for development. This book caters to the audience who are interested in alternative transportation fuels which are both biodegradable and sustainable to the environment.
This book presents research on biomass pretreatments, which are a fundamental part of bioethanol fuel production to make biomass more accessible. This book also includes an introductory section on the bioethanol fuels. Bioethanol Fuel Production Processes. I: Biomass Pretreatments is the first volume in the Handbook of Bioethanol Fuels (Six-Volume Set). The primary pretreatments at the macro level are the biological chemical, hydrothermal, and mechanical pretreatments of the biomass. It also has an introductory section on the biomass pretreatments at large for bioethanol fuel production. The major pretreatments at the micro level are the enzymatic and fungal pretreatments of the biomass as the biological pretreatments, acid, alkaline, ionic liquid, and organic solvent pretreatment pretreatments of the biomass as the chemical pretreatments, steam explosion and liquid hot water pretreatments of the biomass as the hydrothermal pretreatments, and milling, ultrasonic, and microwave pretreatments of the biomass as the mechanical pretreatments. The first volume also indicates that a wide range of pretreatments stand alone or in combination with each other fractionate the biomass to its constituents of cellulose, lignin, and hemicellulose and improve both sugar and bioethanol fuel yield, making this bioethanol fuel more competitive in relation to crude oil- and natural gas-based fossil fuels. This first volume is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.
Bioethanol Production from Food Crops: Sustainable Sources, Interventions and Challenges comprehensively covers the global scenario of ethanol production from both food and non-food crops and other sources. The book guides readers through the balancing of the debate on food vs. fuel, giving important insights into resource management and the environmental and economic impact of this balance between demands. Sections cover Global Bioethanol from Food Crops and Forest Resource, Bioethanol from Bagasse and Lignocellulosic wastes, Bioethanol from algae, and Economics and Challenges, presenting a multidisciplinary approach to this complex topic. As biofuels continue to grow as a vital alternative energy source, it is imperative that the proper balance is reached between resource protection and human survival. This book provides important insights into achieving that balance. - Presents technological interventions in ethanol production, from plant biomass, to food crops - Addresses food security issues arising from bioethanol production - Identifies development bottlenecks and areas where collaborative efforts can help develop more cost-effective technology
This book aims to inform readers about the recent developments in the evaluation and utilization of bioethanol fuels. It covers the evaluation and utilization of bioethanol fuels in general, gasoline fuels, nanotechnology applications in bioethanol fuels, utilization of bioethanol fuels in transport engines, evaluation of bioethanol fuels, utilization of bioethanol fuels in general, and development and utilization of bioethanol fuel sensors. This book is the fifth volume in the Handbook of Bioethanol Fuels (Six-Volume Set). It indicates that research on the evaluation and utilization of bioethanol fuels has intensified in recent years to become a major part of bioenergy and biofuels research together primarily with biodiesel, biohydrogen, and biogas research as a sustainable alternative to crude oil-based gasoline and petrodiesel fuels as well as natural gas and syngas. This book is a valuable resource for stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, and molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities, among others.
This book aims to inform readers about the recent developments in production, evaluation, and utilization of bioethanol fuels from non-waste feedstocks. It covers the production of bioethanol fuels from first generation starch feedstocks and sugar feedstocks, grass biomass, wood biomass, cellulose, biosyngas, and third generation algae. In this context, there are nine key sections where the first four chapters cover the production of bioethanol fuels from feedstocks at large and non-waste feedstocks. This book shows that pretreatments and hydrolysis of the non-waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for bioethanol fuel production from these non-waste feedstocks with the exception of the biosyngas feedstocks. This book is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental, and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others
The sixth volume of this handbook provides an overview of the research on the country-based experience of bioethanol fuels at large, Chinese, US, and European experience of bioethanol fuels, production of bioethanol fuel-based biohydrogen fuels for fuel cells, bioethanol fuel cells, and bioethanol fuel-based biochemicals with a collection of 17 chapters. Thus, it complements the fifth volume of this handbook. Hence, the sixth volume indicates that the research on the evaluation and utilization of bioethanol fuels has intensified in recent years to become a major part of the bioenergy and biofuels research together primarily with biodiesel, biohydrogen, and biogas research as a sustainable alternative to crude oil-based gasoline and petrodiesel fuels as well as natural gas and syngas. This book is intended for students, researchers, engineers, policy makers, economist, business managers, and social scientists, working on the production, utilization and evaluation of bioethanol fuels.
This book provides an overview of the research on production processes for bioethanol fuels in general, hydrolysis of the pretreated biomass for bioethanol production, microbial fermentation of hydrolysates and substrates with yeasts for bioethanol production, and separation and distillation of bioethanol fuels from the fermentation broth, complementing the research on biomass pretreatments presented in the first volume. It presents an overview of the research on biomass hydrolysis in general, wood hydrolysis, straw hydrolysis, and cellulose hydrolysis for bioethanol fuel production in the first section for biomass hydrolysis. It provides an overview of the research on microbial hydrolysate fermentation for bioethanol production in general, alternative fermentation processes for bioethanol fuel production such as simultaneous saccharification and fermentation (SSF) and consolidated biomass processing (CBP) compared with the separate hydrolysis and fermentation (SHF) process, metabolic engineering of microorganisms and substrates for bioethanol fuel production, and utilization of Saccharomyces cerevisiae for microbial fermentation of hydrolysates for bioethanol fuel production in the second section for hydrolysate fermentation. It provides an overview of the research on the bioethanol fuel separation from the fermentation broth in the last section. This book is a valuable resource for the stakeholders primarily in the research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business, management, transportations science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multidisciplinary sciences, and humanities among others.