Download Free Bioenergy Engineering Book in PDF and EPUB Free Download. You can read online Bioenergy Engineering and write the review.

The book provides information on recent advancements in bioenergy engineering to graduates, post-graduates, research scholars, faculty members, academician, researchers and practitioners studying and working in field of the bioenergy engineering. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of biogas technology, densification techniques, biomass gasification, torrefaction of biomass, biochar production, micro algae production, improved biomass cookstoves, bio-ethanol production and the use of microbial processes in the conversion of biomass into biofuels. It will also be useful to faculties and researchers to understand the present status, advancements and policies in implementation of bioenergy technologies in India. This book will definitely provide a direction to the young researchers in identification of thrust areas of research in the field of bioenergy. The book concludes with research and development endeavours and aspects relating to implementation of advance bioenergy technologies.
The newest addition to the Green Chemistry and Chemical Engineering series from CRC Press, Biofuels and Bioenergy: Processes and Technologies provides a succinct but in-depth introduction to methods of development and use of biofuels and bioenergy. The book illustrates their great appeal as tools for solving the economic and environmental challenges associated with achieving energy sustainability and independence through the use of clean, renewable alternative energy. Taking a process engineering approach rooted in the fuel and petrochemical fields, this book masterfully integrates coverage of current conventional processes and emerging techniques. Topics covered include: Characterization and analysis of biofuels Process economics Chemistry of process conversion Process engineering and design and associated environmental technologies Energy balances and efficiencies Reactor designs and process configurations Energy materials and process equipment Integration with other conventional fossil fuel processes Byproduct utilization Governmental regulations and policies and global trends After an overview of the subject, the book discusses crop oils, biodiesel, and algae fuels. It examines ethanol from corn and from lignocelluloses and then explores fast pyrolysis and gasification of biomass. Discussing the future of biofuel production, it also describes the conversion of waste to biofuels, bioproducts, and bioenergy and concludes with a discussion of mixed feedstock. Written for readers with college-level backgrounds in chemistry, biology, physics, and engineering, this reference explores the science and technology involved in developing biofuels and bioenergy. It addresses the application of these and other disciplines, covering key issues of special interest to fuel process engineers, fuel scientists, and energy technologists, among others.
Bioenergy Engineering: Fundamentals, Methods, Modelling, and Applications presents the fundamental principles, recent developments, innovative state-of the-art technologies, challenges, solutions and future perspectives on the production of biofuels and bioenergy. Balancing the scientific and engineering aspects of biofuels production, the book guides readers through the chemical kinetics, modeling, thermodynamics, unit operations and technological advancements in fuel processing from conventional and alternative resources. Each chapter of the book starts with the fundamentals and goes on to assess the latest technologies for the production of renewable fuels on topics. Sections cover biomass utilization, biomass-to-liquid conversion technologies (pyrolysis, liquefaction, solid-state fermentation and submerged fermentation), biomass-to-gas conversion technologies (thermochemical gasification, subcritical and supercritical water gasification, and methanation), gas-to-liquid conversion technologies (Fischer-Tropsch synthesis), carbonization, transesterification, organic transformation, carbon-carbon and carbon-heteroatom coupling reactions, oxidation, reforming, hydrotreating technologies (hydrogenation, hydrodesulfurization, hydrodenitrogenation, hydro dearomatization and hydro demetalization), nanocatalysis and biocatalysis (enzymatic hydrolysis), and much more. - Analyzes emerging technologies for the sustainable conversion of various waste and non-waste materials into bioenergy and biofuels - Examines a wide range of feedstocks and conversion pathways for liquid and gaseous biofuels - Offers practical guidance and data on how to conduct lifecycle assessment, techno-economic analysis, and utilize GIS modeling for a range production pathways
Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each
Biomass, Biopolymer-Based Materials and Bioenergy: Construction, Biomedical and Other Industrial Applications covers a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composite that utilize natural, renewable and biodegradable agricultural biomass. In terms of bioenergy, the authors explore not only the well-known processing methods of biofuels, but also the kinetics of biofuels production pathways, a techno-economic analysis on biomass gasification, and biomass gasification with further upgrading into diesel additives and hybrid renewable energy systems for power generation. Further chapters discuss advanced techniques for the development of biomass-based composites, biopolymer-based composites, biomass gasification, thermal kinetic design and techno-economic analysis of biomass gasification. By introducing these topics, the book highlights a totally new research theme in biopolymer-based composite materials and bioenergy. - Covers a broad range of different research fields, including biopolymer and natural fiber reinforcement used in the development of composites - Demonstrates key research themes in materials science and engineering, including materials processing, polymer science, biofuel processing, and thermal and kinetic studies - Presents valuable information for those working in research and development departments, and for graduate students (Masters and PhDs)
Bioenergy Resources and Technologies presents advanced approaches and applications of bioenergy resources, with a strong focus on environmental sustainability. Chapters on the applications of bioenergy, the implementation of bioenergy as an alternative fuel, and future energy security make this an invaluable and unique resource to further advance the field. This book provides new information and novel techniques across a variety of bioenergy applications, with the book's authors addressing key uses for bioenergy resources as an alternative fuel. Various case studies and examples help demonstrate meaning and provide additional clarity. Social and economic aspects are included for each technology discussed, along with a number of research works and their findings in a diverse mix of areas including energy, environmental science, biotechnology, chemical engineering and mechanical engineering. Researchers and professionals in these disciplines will gain knowledge on the underlying concepts, technologies, fuel applications and solutions to global environmental issues using bioenergy resources. Presents technical and social issues surrounding the latest bioenergy technologies Explores solutions to global sustainability goals through bioenergy applications and the future of energy security Includes experimental investigations of engine performance, emissions and combustion phenomena using different types of oxygenated fuel
This book aspires to be a comprehensive summary of current biofuels issues and thereby contribute to the understanding of this important topic. Readers will find themes including biofuels development efforts, their implications for the food industry, current and future biofuels crops, the successful Brazilian ethanol program, insights of the first, second, third and fourth biofuel generations, advanced biofuel production techniques, related waste treatment, emissions and environmental impacts, water consumption, produced allergens and toxins. Additionally, the biofuel policy discussion is expected to be continuing in the foreseeable future and the reading of the biofuels features dealt with in this book, are recommended for anyone interested in understanding this diverse and developing theme.
Given the environmental concerns and declining availability of fossil fuels, as well as the growing population worldwide, it is essential to move toward a sustainable bioenergy-based economy. However, it is also imperative to address sustainability in the bioenergy industry in order to avoid depleting necessary biomass resources. Sustainable Bioenergy Production provides comprehensive knowledge and skills for the analysis and design of sustainable biomass production, bioenergy processing, and biorefinery systems for professionals in the bioenergy field. Focusing on topics vital to the sustainability of the bioenergy industry, this book is divided into four sections: Fundamentals of Engineering Analysis and Design of Bioenergy Production Systems, Sustainable Biomass Production and Supply Logistics, Sustainable Bioenergy Processing, and Sustainable Biorefinery Systems. Section I covers the fundamentals of genetic engineering, novel breeding, and cropping technologies applied in the development of energy crops. It discusses modern computational tools used in the design and analysis of bioenergy production systems and the life-cycle assessment for evaluating the environmental sustainability of biomass production and bioenergy processing technologies. Section II focuses on the technical and economic feasibility and environmental sustainability of various biomass feedstocks and emerging technologies to improve feedstock sustainability. Section III addresses the technical and economic feasibility and environmental sustainability of different bioenergy processing technologies and emerging technologies to improve the sustainability of each bioenergy process. Section IV discusses the design and analysis of biorefineries and different biorefinery systems, including lignocellulosic feedstock, whole-crop, and green biorefinery.
Hydrogen and Bioenergy: Integration Pathways for Renewable Energy Applications focuses on the nexus between hydrogen and carbon compounds as energy carriers, with a particular focus on renewable energy solutions. This book explores opportunities for integrating hydrogen in the bioenergy value chain, such as adding hydrogen to upgrade biofuels and lower CO2 emissions during production. The book also takes the inverse path to examine hydrogen production by chemical and biological routes from various bioresources, including solid waste, wastewater, agricultural products and algae. This broad coverage of technologies and applications presents a unique resource for researchers and practitioners developing integrated hydrogen and bioenergy technologies. This book will also be useful for graduate students and new researchers, presenting an introductory resource in the areas of hydrogen and bioenergy. Energy planners and engineers will also benefit from this content when designing and deploying hydrogen infrastructure for power, heating and transportation.
Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems