Download Free Biodiversity And Evolution Book in PDF and EPUB Free Download. You can read online Biodiversity And Evolution and write the review.

Biodiversity and Evolution includes chapters devoted to the evolution and biodiversity of organisms at the molecular level, based on the study of natural collections from the Museum of Natural History. The book starts with an epistemological and historical introduction and ends with a critical overview of the Anthropocene epoch. - Explores the study of natural collections of the Museum of Natural History - Examines evolution and biodiversity at the molecular level - Features an introduction focusing on epistemology and history - Provides a critical overview
The book includes 19 selected contributions presented at the 21st Evolutionary Biology Meeting, which took place in Marseille in September 2017. The chapters are grouped into the following five categories: · Genome/Phenotype Evolution · Self/Nonself Evolution · Origin of Biodiversity · Origin of Life · Concepts The annual Evolutionary Biology Meetings in Marseille serve to gather leading evolutionary biologists and other scientists using evolutionary biology concepts, e.g. for medical research. The aim of these meetings is to promote the exchange of ideas to encourage interdisciplinary collaborations. Offering an up-to-date overview of recent findings in the field of evolutionary biology, this book is in invaluable source of information for scientists, teachers and advanced students.
Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€"recombinant DNA, scanning tunneling microscopes, and moreâ€"are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€"for funding, effective information systems, and other supportâ€"of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.
Draws on more than three decades of research in microbial experimental evolution to provide a sketch of a general, empirically grounded theory of biodiversity and the first synthetic treatment of experimental evolution.
Predictions about the success of the Convention on Biological Diversity (CBD) are pessimistic. It has now become commonplace to bemoan the scope, ambition, and deeply political nature of a convention that addresses issues ranging from ecosystems protection to the exploitation of genetic resources, from conservation to justice, and from commerce to scientific knowledge. Ten years after its adoption, how can we assess the difference that the CBD has made? Is it in danger of collapsing under its own weight or is it building the foundations of new patterns of relations between societies and nature? What achievements can we record and what challenges does it face? In this book, which is unique in its scope, diversity and the wealth of information it contains, contributors from a variety of academic disciplines tackle an issue of enduring importance to the protection of biodiversity and enhance our understanding of humanity's capacity to reconcile its various aspirations and halt the destructive path upon which it is set.
Radiations, or Evolution in Action We have just celebrated the “Darwin Year” with the double anniversary of his 200th birthday and 150th year of his masterpiece, “On the Origin of Species by means of Natural Selection”. In this work, Darwin established the factual evidence of biological evolution, that species change over time, and that new organisms arise by the splitting of ancestral forms into two or more descendant species. However, above all, Darwin provided the mechanisms by arguing convincingly that it is by natural selection – as well as by sexual selection (as he later added) – that organisms adapt to their environment. The many discoveries since then have essentially con?rmed and strengthened Darwin’s central theses, with latest evidence, for example, from molecular genetics, revealing the evolutionary relationships of all life forms through one shared history of descent from a common ancestor. We have also come a long way to progressively understand more on how new species actually originate, i. e. on speciation which remained Darwin’s “mystery of m- teries”, as noted in one of his earliest transmutation notebooks. Since speciation is the underlying mechanism for radiations, it is the ultimate causation for the biological diversity of life that surrounds us.
This book is about phylogenetic diversity as an approach to reduce biodiversity losses in this period of mass extinction. Chapters in the first section deal with questions such as the way we value phylogenetic diversity among other criteria for biodiversity conservation; the choice of measures; the loss of phylogenetic diversity with extinction; the importance of organisms that are deeply branched in the tree of life, and the role of relict species. The second section is composed by contributions exploring methodological aspects, such as how to deal with abundance, sampling effort, or conflicting trees in analysis of phylogenetic diversity. The last section is devoted to applications, showing how phylogenetic diversity can be integrated in systematic conservation planning, in EDGE and HEDGE evaluations. This wide coverage makes the book a reference for academics, policy makers and stakeholders dealing with biodiversity conservation.
Biodiversity-the genetic variety of life-is an exuberant product of the evolutionary past, a vast human-supportive resource (aesthetic, intellectual, and material) of the present, and a rich legacy to cherish and preserve for the future. Two urgent challenges, and opportunities, for 21st-century science are to gain deeper insights into the evolutionary processes that foster biotic diversity, and to translate that understanding into workable solutions for the regional and global crises that biodiversity currently faces. A grasp of evolutionary principles and processes is important in other societal arenas as well, such as education, medicine, sociology, and other applied fields including agriculture, pharmacology, and biotechnology. The ramifications of evolutionary thought also extend into learned realms traditionally reserved for philosophy and religion. The central goal of the In the Light of Evolution (ILE) series is to promote the evolutionary sciences through state-of-the-art colloquia-in the series of Arthur M. Sackler colloquia sponsored by the National Academy of Sciences-and their published proceedings. Each installment explores evolutionary perspectives on a particular biological topic that is scientifically intriguing but also has special relevance to contemporary societal issues or challenges. This tenth and final edition of the In the Light of Evolution series focuses on recent developments in phylogeographic research and their relevance to past accomplishments and future research directions.
This book argues that organisms and their interactions create and maximize biodiversity. The evidence for this autocatalytic hypothesis has been collated and integrated into this provocative argument. Natural selection favors the increase of biodiversity. Organisms can be causative agents contributing to major macroevolutionary transitions. Species tend to have a net positive effect on biodiversity. All species are ecosystem engineers. Mutualism and commensalism are common and fundamental, and these coevolved interspecific interactions frequently generate enormous increases in biodiversity. Competition generally does not decrease biodiversity, and often leads to evolutionary innovation. Plants are ecosystem engineers that have made Earth more favorable to life and increased diversity in many ways. Herbivores and predators increase the diversity of the species they consume, and are necessary for ecosystem stability. Decomposers are essential to ecosystem health. All these examples illustrate the focus of this book – that organisms and their interactions stimulate biodiversity, and ecosystems maximize it. Key Features • Describes a hypothesis that life itself generates higher biodiversity • Suggests a highly modified version of the established paradigm in population biology and evolution • Asserts that all species are ecosystem engineers with a net positive effect on biodiversity and their ecosystems • Suggests that mutualism and commensalism are the rule • Presents a novel view likely to elicit deeper discussions of biodiversity Related Titles Dewdney, A. K. Stochastic Communities: A Mathematical Theory of Biodiversity (ISBN 978-1-138-19702-2) Curry, G. B. and C. J. Humphries, eds. Biodiversity Databases: Techniques, Politics, and Applications (ISBN 978-0-367-38916-1) Pullaiah, T, ed. Global Biodiversity. 4 Volume Set (ISBN 978-1-77188-751-9)
The loss of the earth's biological diversity is widely recognized as a critical environmental problem. That loss is most severe in developing countries, where the conditions of human existence are most difficult. Conserving Biodiversity presents an agenda for research that can provide information to formulate policy and design conservation programs in the Third World. The book includes discussions of research needs in the biological sciences as well as economics and anthropology, areas of critical importance to conservation and sustainable development. Although specifically directed toward development agencies, non-governmental organizations, and decisionmakers in developing nations, this volume should be of interest to all who are involved in the conservation of biological diversity.