Download Free Biodiversity And Crop Improvement Book in PDF and EPUB Free Download. You can read online Biodiversity And Crop Improvement and write the review.

The world population is estimated to reach to more than 10 billion by the year 2050. These projections pose a challenging situation for the agricultural scientists to increase crops productivity to meet the growing food demands. The unavailability and/or inaccessibility to appropriate gene pools with desired traits required to carry out genetic improvement of various crop species make this task formidable for the plant breeders. Incidentally, most of the desired genes reside in the wild genetic relatives of the crop species. Therefore, exploration and characterization of wild genetic resources of important crop species is vital for the efficient utilization of these gene pools for sustainable genetic improvements to assure food security. Further, understanding the myriad complexities of genic and genomic interactions among species, more particularly of wild relatives of crop species and/or phylogenetically distant germplasm, can provide the necessary inputs to increase the effectiveness of genetic improvement through traditional and/or genetic engineering methods. This book provides comprehensive and latest insights on the evolutionary genesis of diversity, access and its utilization in the evolution of various crop species. A comprehensive account of various crops, origin, exploitation of the primary, secondary and tertiary gene pools through breeding, biosystematical, cytogenetical and molecular phylogenetical relationships, and genetic enhancement through biotechnological interventions among others have been provided as the necessary underpinnings to consolidate information on the effective and sustainable utilization of the related genetic resources. The book stresses upon the importance of wild germplasm exploration, characterization and exploitation in the assimilation of important crop species. The book is especially intended for students and scientists working on the genetic improvement of crop species. Plant Breeders, Geneticists, Taxonomists, Molecular Biologists and Plant Biotechnologists working on crop species are going to find this book very useful.
Based on the 2010 conference 'Towards the establishment of genetic reserves for crop wild relatives and landraces in Europe', this book is the cutting-edge discussion of agrobiodiversity conservation. By considering the benefits of understanding and preserving crop wild relatives and landraces, it encompasses issues as wide-ranging and topical as habitat protection, ecosystem health and food security. "Agrobiodiversity Conservation" focuses on Europe, but is globally relevant. It is suitable for postgraduate students of conservation and environmental studies, conservation professiona.
Crop wild relatives (CWR) are species closely related to crop plants which can contribute beneficial traits such as pest or disease resistance and yield improvement. Through an examination of national, regional and global context of CWR, this text presents methodologies and case studies that provide recommendations for global conservation and use.
The world population is estimated to reach to more than 10 billion by the year 2050. These projections pose a challenging situation for the agricultural scientists to increase crops productivity to meet the growing food demands. The unavailability and/or inaccessibility to appropriate gene pools with desired traits required to carry out genetic improvement of various crop species make this task formidable for the plant breeders. Incidentally, most of the desired genes reside in the wild genetic relatives of the crop species. Therefore, exploration and characterization of wild genetic resources of important crop species is vital for the efficient utilization of these gene pools for sustainable genetic improvements to assure food security. Further, understanding the myriad complexities of genic and genomic interactions among species, more particularly of wild relatives of crop species and/or phylogenetically distant germplasm, can provide the necessary inputs to increase the effectiveness of genetic improvement through traditional and/or genetic engineering methods. This book provides comprehensive and latest insights on the evolutionary genesis of diversity, access and its utilization in the evolution of various crop species. A comprehensive account of various crops, origin, exploitation of the primary, secondary and tertiary gene pools through breeding, biosystematical, cytogenetical and molecular phylogenetical relationships, and genetic enhancement through biotechnological interventions among others have been provided as the necessary underpinnings to consolidate information on the effective and sustainable utilization of the related genetic resources. The book stresses upon the importance of wild germplasm exploration, characterization and exploitation in the assimilation of important crop species. The book is especially intended for students and scientists working on the genetic improvement of crop species. Plant Breeders, Geneticists, Taxonomists, Molecular Biologists and Plant Biotechnologists working on crop species are going to find this book very useful.
This timely collection of 15 original essays written by expert scientists the world over addresses the relationships between human population growth, the need to increase food supplies to feed the world population, and the chances for avoiding the extinction of a major proportion of the world's plant and animal species that collectively makes our survival on Earth possible. These relationships are highly intertwined, and changes in each of them steadily decrease humankind’s chances to achieve environmental stability on our fragile planet. The world population is projected to be nine to ten billion by 2050, signaling the need to increase world food production by more than 70 percent on the same amount of land currently under production—and this without further damaging our fragile environment. The essays in this collection, written by experts for laypersons, present the problems we face with clarity and assess our prospects for solving them, calling for action but holding out viable solutions.
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research. - Reviews techniques used for crop improvement, from selection and crossing over, to microorganismal approaches - Explores the role of conventional biotechnology in crop improvement - Summarizes the combined approaches of cytogenetics and biotechnology for crop improvement, including the importance of molecular techniques in this process - Focuses on the emerging role of bioinformatics for crop improvement
The papers included in this Special Issue address a variety of important aspects of plant biodiversity and genetic resources, including definitions, descriptions, and illustrations of different components and their value for food and nutrition security, breeding, and environmental services. Furthermore, comprehensive information is provided regarding conservation approaches and techniques for plant genetic resources, policy aspects, and results of biological, genetic, morphological, economic, social, and breeding-related research activities. The complexity and vulnerability of (plant) biodiversity and its inherent genetic resources, as an integral part of the contextual ecosystem and the human web of life, are clearly demonstrated in this Special Issue, and for several encountered problems and constraints, possible approaches or solutions are presented to overcome these.
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.
This book comprises 7 chapters discussing the genetic diversity conservation in protected areas and the management of wild relatives. Some topics covered were: genetic reserve management, location and design; plant population monitoring methods for in situ conservation of wild relatives; habitat recovery; and ex situ measures.
As the world’s population rises to an expected ten billion in the next few generations, the challenges of feeding humanity and maintaining an ecological balance will dramatically increase. Today we rely on just four crops for 80 percent of all consumed calories: wheat, rice, corn, and soybeans. Indeed, reliance on these four crops may also mean we are one global plant disease outbreak away from major famine. In this revolutionary and controversial book, Jonathan Gressel argues that alternative plant crops lack the genetic diversity necessary for wider domestication and that even the Big Four have reached a “genetic glass ceiling”: no matter how much they are bred, there is simply not enough genetic diversity available to significantly improve their agricultural value. Gressel points the way through the glass ceiling by advocating transgenics—a technique where genes from one species are transferred to another. He maintains that with simple safeguards the technique is a safe solution to the genetic glass ceiling conundrum. Analyzing alternative crops—including palm oil, papaya, buckwheat, tef, and sorghum—Gressel demonstrates how gene manipulation could enhance their potential for widespread domestication and reduce our dependency on the Big Four. He also describes a number of ecological benefits that could be derived with the aid of transgenics. A compelling synthesis of ideas from agronomy, medicine, breeding, physiology, population genetics, molecular biology, and biotechnology, Genetic Glass Ceilings presents transgenics as an inevitable and desperately necessary approach to securing and diversifying the world's food supply.