Download Free Biodiesel Combustion Performance And Emissions Characteristics Book in PDF and EPUB Free Download. You can read online Biodiesel Combustion Performance And Emissions Characteristics and write the review.

This book focuses on biodiesel combustion, including biodiesel performance, emissions and control. It brings together a range of international research in combustion studies in order to offer a comprehensive resource for researchers, students and academics alike. The book begins with an introduction to biodiesel combustion, followed by a discussion of NOx formation routes. It then addresses biodiesel production processes and oil feedstocks in detail, discusses the physiochemical properties of biodiesel, and explores the benefits and drawbacks of these properties. Factors influencing the formation of emissions, including NOx emissions, are also dealt with thoroughly. Lastly, the book discusses the mechanisms of pollution and different approaches used to reduce pollutants in connection with biodiesel. Each approach is considered in detail, and diagrams are provided to illustrate the points in line with industry standard control mechanisms.
Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.
Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.
In today’s global context, there has been extensive research conducted in reducing harmful emissions to conserve and protect our environment. In the automobile and power generation industries, diesel engines are being utilized due to their high level of performance and fuel economy. However, these engines are producing harmful pollutants that contribute to several global threats including greenhouse gases and ozone layer depletion. Professionals have begun developing techniques to improve the performance and reduce emissions of diesel engines, but significant research is lacking in this area. Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines is a pivotal reference source that provides vital research on technical and environmental enhancements to the emission and combustion characteristics of diesel engines. While highlighting topics such as biodiesel emulsions, nanoparticle additives, and mathematical modeling, this publication explores the potential additives that have been incorporated into the performance of diesel engines in order to positively affect the environment. This book is ideally designed for chemical and electrical engineers, developers, researchers, power generation professionals, mechanical practitioners, scholars, ecologists, scientists, graduate students, and academicians seeking current research on modern innovations in fuel processing and environmental pollution control.
Biofuels such as ethanol, butanol, and biodiesel have more desirable physico-chemical properties than base petroleum fuels (diesel and gasoline), making them more suitable for use in internal combustion engines. The book begins with a comprehensive review of biofuels and their utilization processes and culminates in an analysis of biofuel quality and impact on engine performance and emissions characteristics, while discussing relevant engine types, combustion aspects and effect on greenhouse gases. It will facilitate scattered information on biofuels and its utilization has to be integrated as a single information source. The information provided in this book would help readers to update their basic knowledge in the area of "biofuels and its utilization in internal combustion engines and its impact Environment and Ecology". It will serve as a reference source for UG/PG/Ph.D. Doctoral Scholars for their projects / research works and can provide valuable information to Researchers from Academic Universities and Industries. Key Features: • Compiles exhaustive information of biofuels and their utilization in internal combustion engines. • Explains engine performance of biofuels • Studies impact of biofuels on greenhouse gases and ecology highlighting integrated bio-energy system. • Discusses fuel quality of different biofuels and their suitability for internal combustion engines. • Details effects of biofuels on combustion and emissions characteristics.
With a focus on ecology, economy and engine performance, diesel engines are explored in relation to current research and developments. The prevalent trends in this development are outlined with particular focus on the most frequently used alternative fuels in diesel engines; the properties of various type of biodiesel and the concurrent improvement of diesel engine characteristics using numeric optimization alongside current investigation and research work in the field. Following of a short overview of engine control, aftertreatment and alternative fuels, Green Diesel Engine explores the effects of biodiesel usage on injection, fuel spray, combustion, and tribology characteristics, and engine performance. Additionally, optimization procedures of diesel engine characteristics are discussed using practical examples and each topic is corroborated and supported by current research and detailed illustrations. This thorough discussion provides a solid foundation in the current research but also a starting point for fresh ideas for engineers involved in developing/adjusting diesel engines for usage of alternative fuels, researchers in renewable energy, as well as to engineers, advanced undergraduates, and postgraduates.
This book presents select proceedings of the 3rd International Conference on Computational and Experimental Methods in Mechanical Engineering (ICCEMME 2021). It gives an overview of recent developments in the field of fluid dynamics and thermal engineering. Topics covered include case studies in thermal engineering, combustion engines, computational fluid dynamics (cfd), cooling systems, energy conservation, energy conversion, renewable energy, bio fuels, gas turbines, heat exchangers and heat transfer systems, heat pipes and pumps, heat transfer augmentation, refrigeration and HVAC systems, fluids engineering, energy and process, and thermal power plants. The book will be useful for researchers and professionals working in the area of thermal engineering and allied fields.
Exploring how to counteract the world's energy insecurity and environmental pollution, this volume covers the production methods, properties, storage, engine tests, system modification, transportation and distribution, economics, safety aspects, applications, and material compatibility of alternative fuels. The esteemed editor highlights the importance of moving toward alternative fuels and the problems and environmental impact of depending on petroleum products. Each self-contained chapter focuses on a particular fuel source, including vegetable oils, biodiesel, methanol, ethanol, dimethyl ether, liquefied petroleum gas, natural gas, hydrogen, electric, fuel cells, and fuel from nonfood crops.
This book discusses the emerging research centred on using methanol- whose excellent fuel properties, easy production and relative compatibility with existing technology- make it attractive to researchers looking to alternative fuels to meet the rising energy demand. The volume is divided into broadly 4 parts which discuss various aspects of the proposed methanol economy and the technological advances in engine design for the utilisation of this fuel. This book will be of interest to researchers and policy makers interested in using methanol as the principal source of ready and stored energy in societal functioning.
This book focuses on droplets and sprays relevant to combustion and propulsion applications. The book includes fundamental studies on the heating, evaporation and combustion of individual droplets and basic mechanisms of spray formation. The contents also extend to the latest analytical, numerical and experimental techniques for investigating the behavior of sprays in devices like combustion engines and gas turbines. In addition, the book explores several emerging areas like interactions between sprays and flames and the dynamic characteristics of spray combustion systems on the fundamental side, as well as the development of novel fuel injectors for specific devices on the application side. Given its breadth of coverage, the book will benefit researchers and professionals alike.