Download Free Biodegradable Thermoplastic Starch Of Peach Palm Bactris Gasipaes Kunth Fruit Production And Characterisation Book in PDF and EPUB Free Download. You can read online Biodegradable Thermoplastic Starch Of Peach Palm Bactris Gasipaes Kunth Fruit Production And Characterisation and write the review.

Biodegradable Polymers, Blends and Composites provides a comprehensive review on recent developments in this very important research field. The book's chapters cover the various types of biodegradable polymers currently available and their composites, with discussions on preparation, properties and applications. Sections cover natural rubber-based polymer blends, soy-protein, cellulose, chitin, starch-based, PLA, PHBV, PCL, PVA, PBAT-based blends, Poly (ethylene succinate), PHB and Poly (propylene carbonates). The book will be a valuable reference resource for academic and industrial researchers, technologists and engineers working on recent developments in the area of biodegradable polymers, their blends and composites. - Discusses the various types of biodegradable polymers, blends and composites - Covers natural rubber, cellulose, chitin, starch, PLA, PCL and PBAT - Features modern processing technologies, properties, applications and biodegradability
Starch: Chemistry and Technology, Second Edition focuses on the chemistry, processes, methodologies, applications, and technologies involved in the processing of starch. The selection first elaborates on the history and future expectation of starch use, economics and future of the starch industry, and the genetics and physiology of starch development. Discussions focus on polysaccharide biosynthesis, nonmutant starch granule polysaccharide composition, cellular developmental gradients, projected future volumes of corn likely to be used by the wet-milling industry, and organization of the corn wet-milling industry. The manuscript also tackles enzymes in the hydrolysis and synthesis of starch, starch oligosaccharides, and molecular structure of starch. The publication examines the organization of starch granules, fractionation of starch, and gelatinization of starch and mechanical properties of starch pastes. Topics include methods for determining starch gelatinization, solution properties of amylopectin, conformation of amylose in dilute solution, and biological and biochemical facets of starch granule structure. The text also takes a look at photomicrographs of starches, industrial microscopy of starches, and starch and dextrins in prepared adhesives. The selection is a vital reference for researchers interested in the processing of starch.
Taxonomy, nomenclature and geographical distribution. Description of the cultivated species. Uses and properties. Origin and domestication. Genetic resources. Genetic improvement estrategies. Propagation. Agronomy of fruit and heart-of-palm production. Production areas and commercial potential.
One of the most significant challenges facing mankind in the twenty-first century is the development of a sustainable global economy. Within the scientific community, this calls for the development of processes and technologies that will allow the sustainable production of materials from renewable natural resources. Plant material, in particular lignin, is one such resource. During the annual production of about 100 million metric tons of chemical wood pulps worldwide, approximately 45 and 2 million metric tons/year of kraft lignin and lignosulfonates, respectively, are also generated. Although lignosulfonates have found many applications outside the pulp and paper industry, the majority of kraft lignin is being used internally as a low-grade fuel for the kraft pulping operation. A surplus of kraft lignin will become available as kraft mills increase their pulp production without expanding the capacity of their recovery boilers that utilize lignin as a fuel. There is a tremendous opportunity and an enormous economic incentive to find better uses of kraft lignin, lignosulfonates and other industriallignins. The pulp and paper industry not only produces an enormous amount of lignins as by products of chemical wood pulps, but it also utilizes about 10 million metric tons of lignin per year as a component of mechanical wood pulps and papers. Mechanical wood pulps, produced in a yield of 90-98% with the retention of lignin, are mainly used to make low-quality, non-permanent papers such as newsprint and telephone directories because of the light-induced photooxidation of lignin and the yellowing of the papers.
This handbook covers characteristics, processability and application areas of biodegradable polymers, with key polymer family groups discussed. It explores the role of biodegradable polymers in different waste management practices including anaerobic digestion, and considers topics such as the different types of biorefineries for renewable monomers used in producing the building blocks for biodegradable polymers.
The 21st century offers vast challenges for researchers all around the globe, especially regarding the effective use of sustainable polymers and their materials for different applications. With this focus, sustainable polymers are now rising as one of the most feasible alternatives to traditional synthetic polymers/materials for a variety of indust
This book includes papers on polymeric materials from renewable resources known as `Biorelated Polymers and Plastics', and issues are bound to their utilization and environmental impact in their production, conversions to manufacts and ultimate disposal of post-costume manufacts. Modern industrial developments inspired by the new concepts of sustainability and ecocompatibility require a deeper attention to renewable resources as a new-old source of raw material and feedback. This new trend, occurring not only in industrialized countries but also in emerging countries and countries in transition, thoroughly permeates the polymer and plastic industry, due to the big impact that those materials have on the modern way of life. Plastic waste, specifically that stemming from segments of packaging, containers for solids and liquids and single use items, is attracting much effort from municipality officers, producers and converters, aimed at finding a harmonized solution among the various options available for their appropriate management. In this respect, polymeric materials of natural origin (biopolymers), as well as materials from renewable resources useable for the production of monomeric precursors, or semi-synthetic polymeric materials, constitute a focal point for future industrial development in the production of polymers and plastics. The present book contains much valuable information and scientific hints on a modern approach aimed at designing processes and products with minimal negative environmental impact.
Lignocellulose Biodegradation will be useful for chemists, biochemists, microbiologists, molecular biologists, and biochemical engineers. This book describes advances in lignocellulose biodegradation and application in biotechnology. It contains a combination of original research and review chapters. An overview chapter on lignocellulose biodegradation and applications in biotechnology focuses on recent research progress in the field. Lignocellulose Biodegradation includes sections on pretreatment, biodegradation, enzyme characterization and application.
Water Activity and Food explores the role of water activity in the water relations of microorganisms and in food processing, packaging, and storage. It reviews the literature and provides numerous examples demonstrating the use of water activity to predict the reactions of microorganisms or the stability of food components. It also highlights cases where water activity is not a reliable predictor of events and considers some interesting interactions with other environmental parameters. Comprised of 11 chapters, this volume begins with an overview of water in foods and solutions, water activity values for foods, and water relations of enzyme activity. It then discusses lipid oxidation, enzyme reactions and non-enzymatic browning, and several other food-related factors. The reader is also introduced to water relations of microbial growth; the effects of water on microbial survival; the spoilage and preservation of foods at various levels of water activity; the water relations of food-borne pathogens such as Salmonella and toxigenic molds; the importance of water activity in non-microbiological aspects of food processing and storage; and the influence of atmospheric relative humidity on sanitation and the protection of food products. This book is an important source of information for researchers in food microbiology and microbial water relations.