Download Free Biodegradable Polymers And Their Emerging Applications Book in PDF and EPUB Free Download. You can read online Biodegradable Polymers And Their Emerging Applications and write the review.

Bio-degradable polymers are rapidly emerging as a sustainable alternative to traditional petroleum-based plastics and polymers. However, the synthesis and processing of such polymers present unique challenges and opportunities. In this comprehensive volume, Dr. Saha and her team provide an in-depth exploration of the synthesis and processing of bio-degradable polymers and their emerging applications in various sectors from drug delivery to food packaging. Covering a wide range of topics, including synthesis, modification, processing techniques, and few of their advanced applications in emerging areas, this book provides a comprehensive overview of the field. The authors also delve into cutting-edge research on the synthesis, properties and applications of bio-degradable polymers in various fields, such as agricultural, food preservation, biomedical arena, energy storage and other advanced application areas. This volume is an essential resource for scientists, engineers, and policymakers interested in the future of sustainable materials. Whether you are a researcher looking to expand your knowledge of biodegradable polymer synthesis and processing or a policymaker interested in the potential of biodegradable polymers to reduce our reliance on fossil fuels, this book is an invaluable guide to the field.
The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject in part one by outlining the classification and development of biodegradable polymers with individual chapters on polyhydroxyalkanoates, polyesteramides and thermoplastic starch biodegradable polymers and others. The second part explores the materials available for the production of biodegradable polymers. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites will be looked at in detail in this section. Part three looks at the properties and mechanisms of degradation, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry.
This book focuses on biodegradable polymers that are already in clinical use or under clinical development. Synthetic and natural polymers will be included. This excludes polymers that have been investigated and did not reach clinical development. The purpose of this book is to provide updated status of the polymers that are clinical use and those that are now being developed for clinical use and hopefully will reach the clinic during the next 5 years. The book provides information that of interest to academics and practicing researchers including chemists, biologists and bioengineers and users: physicians, pharmacists.
Biobased biodegradable polymers are emerging as an alternative to fossil fuel-based plastics. Biodegradable Polymers, Blends and Biocomposites: Trends and Applications discusses trends in the development of microbial/other renewable source-based bioplastic products, their blends and biocomposites applications in various industrial fields. It covers biodegradable polymeric materials preparation, extraction, formulation, modification of properties, product development and applications and end-of-life options. Furthermore, the book discusses topics like bioplastic resources, isolation procedures, utilization at commercial level and markets and economy. Features: Explains emerging application possibilities of biobased biodegradable polymers. Provides detailed application notes on agricultural waste-based bioplastics. Covers microbial and agro-based biocomposites and their applications. Summarizes bioplastic degradation and blending research. Discusses application possibilities of biobased biodegradable polymers. The book is aimed at researchers and graduate students in polymers and composites.
Biopolymers: Synthesis, Properties, and Emerging Applications presents the state-of-the-art in biopolymers, bringing together detailed information on synthesis strategies, processing and cutting-edge applications. The book begins by introducing the synthesis, processing and structural and functional properties of smart biopolymers and bionanocomposites. Subsequent chapters focus on the synthesis and preparation of biopolymers with valuable properties or for specific advanced applications, including piezoelectric properties, shape memory properties, biodegradable polymer blends, synthesis and assembly of nanomaterials, synthesis of green biopolymers, and catalytic synthesis of bio-sourced polyesters and polycarbonate, as well as applications in active food packaging, water purification, biomedicine, 3D printing, and automotive. Throughout the book, there are analyses of different synthesis strategies and processing methods and their role and use in different fields of application, whilst the important challenges relating to scalable processing and shaping and micro and nano structuration are also discussed. The book also strives to balance the synthetic aspects of biopolymers with physical principles, highlighting biopolymer-based architectures including composite or hybrid conjugates, providing in-depth discussion of important examples of reaction mechanisms, and exploring potential applications of biopolymer and conjugates, ranging from physical to chemical and biological systems. Provides the reader with a broad and detailed overview of the latest advances in biopolymers, covering synthesis, processing, properties and applications Examines synthesis strategies and processing methods, focusing on green and sustainable catalytic synthesis approaches for biopolymer production Reviews smart applications of biopolymers, including active food packaging, photocatalytic, electric, electronic, piezoelectric, antimicrobial, environmental, and more
This book is about development of biodegradable polymers alternatives, which are required to save our reserves of fossil fuels and to save our mother earth from further environmental degradation. This book deals with the family of biodegradable polymers which have to be prepared with a novel idea of studying polymers with a “Cradle to Grave” approach. It touches upon basic materials, which can be potential materials to prepare biodegradable polymers with their basic structures, properties, behaviour and limitations known till date. This book will help students in understanding various characterization techniques which can be used for the study of identification of functional group, structural properties, thermal behaviour, crystallographic nature, mechanical properties and morphological properties through FTIR–ATR for physico chemical properties, DSC & TGA for thermal studies, XRD for crystallographic studies & SEM for morphological studies. It also provides an overview of various testing methods to analyse biodegradability including standard guideline for evaluation of biodegradation and compostability of polymer material through ASTM/ISO/EN standard methods. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Bioresorbable or biodegradable polymers are commonly used in various biomedical applications. The application of bioresorbable polymers in the biomedical sector has been widely exploited by immobilising suturing thread with an analgesic or antibacterial drugs, and the development of bioresorbable vascular scaffolds, wound-healing and intravenous drug-delivery devices. Furthermore, biodegradable polymers have been investigated as a replacement for metallic orthopaedic devices due to their precise control of material composition and microstructure. These polymers are eliminated from the body via dissolution, assimilation and excretion through metabolic pathways. The hydrolysing process breaks down the polymer into smaller units and its degradation products are excreted by means of the citric acid cycle or by direct renal excretion with no residual side effects.Processing of bioresorbable implants can be achieved via conventional polymer processing methods such as extrusion, injection and compressing moulding, solvent spinning or casting. However, special consideration must be given when processing these materials because heat can cause a reduction in molecular weight due to the hydrolysing of bonds. In addition, overheating can depolymerise the polymer and, as a result, monomers can have a plasticising effect on the polymer. Recently, alternative approaches utilising rapid prototyping and micro-/nanofabrication processes have been employed.This book addresses these issues and highlights recent advances in the biomedical field that have being enabled by the use of biodegradable polymers. This book is designed as a reference guide for academic researchers utilising biodegradable polymers in a range of areas from tissue engineering to controlled release of active pharmaceuticals, through to industry-based processors of biodegradable polymers.
Basic concepts on biodegradable biopolymer science are presented in this book, as well as techniques, analyses, standards, and essential criteria for the characterization of biodegradable materials obtained from biopolymers. The development and innovation of products and processes considering the environment are highlighted in this book. All of the applications described have been discussed from the point of view of sustainability. Additionally, this book highlights that biodegradability is a great burden when trying to replace, modify, and/or design existing products, and processes that are highly polluting. Finally, the present book concludes with reflections on the development of biopolymers in different areas, and some of their consequences depending on their biodegradability.
Synthetic and semi-synthetic polymeric materials were originally developed for their durability and resistance to all forms of degradation including biodegradation. Such materials are currently widely accepted because of their ease of processability and amenability to provide a large variety of cost effective items that help to enhance the comfort and quality of life in the modern industrial society. However, this widespread utilization of plastics has contributed to a serious plastic waste burden, and the expectation for the 21st century is for an increased demand for polymeric material. This volume focuses on a more rational utilization of resources in the fabrication, consumption and disposal of plastic items, specifically: -Environmentally Degradable Polymeric Materials (EDPs); -Water-soluble/Swellable Biodegradable Polymers; -EDPs from Renewable Resources; -Biopolymers; -Bioresorbable Materials for Biomedical Applications; -Biorelated Polymers; -Standards and Regulations on EDPs.
Document from the year 2016 in the subject Medicine - Pharmacology, Pharmacy, , course: Pharmaceutical technology, language: English, abstract: The aim of this book is to provide a brief but comprehensive overview on the issue of biodegradable polymers. The introduction chapter is followed by a description of the general characteristics of biodegradable polymers and pathways of their degradation in the human body. Particular pitfalls and specifics of their various biomedical and pharmaceutical applications, especially in the field of pharmaceutical technology, are described in order to define the ideal carrier polymer system for specific types of therapy. Finally, the work presents the classification of these polymers based on the type of degradation mechanism. This section also includes the chemical structure of particular polymer molecules, their chemical or bio-synthesis and the description of their uses in specific biomedical and pharmaceutical applications. The book could be used as a textbook for students of medical and pharmaceutical sciences as well as by researchers in this field or industrial area. In the past few decades, biodegradable polymers have reached significant importance in fields of biomedical and pharmaceutical applications. They have become preferred candidates for the manufacture of therapeutic forms, for instance, orthopaedics devices, temporary bone screws and spins, three-dimensional scaffolds for tissue engineering or drug delivery systems for sustained and targeted release. Each of these applications requires material with specific physical, biological, and chemical properties, as well as specific degradation profile. These polymers (natural or synthetic) undergo hydrolytic or enzymatic degradation, which both have some advantages and disadvantages. Most widely used polymer materials in biomedical applications are listed, including their structure and degradation pathways.