Download Free Biodata Mining And Visualization Novel Approaches Book in PDF and EPUB Free Download. You can read online Biodata Mining And Visualization Novel Approaches and write the review.

"There is a lack of an exposition on interdisciplinary and innovative methods of data mining and visualization for biodata. This book fills the gap by introducing an interdisciplinary set of the most recent methods and references on novel techniques from artificial intelligence, data mining, engineering, pattern recognition, and ontological data mining fields that are applicable to bioinformatics. The latest novel approaches are explained in detail, their advantages and disadvantages are summarized, and pointers to the future development of new applications are given. By widening the pool from which biologists and bioinformaticians can adopt methods for biodata mining and visualization, computational data mining experts in nonbiological fields are also encouraged to utilize their expertise in order to contribute to the progress of computational biology, thus enhancing the collaboration between these two disciplines."--Publisher's website
This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. Furthermore, the book includes R codes and example data sets to help readers develop their own bioinformatics research skills. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics textbooks on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for undergraduate/graduate teaching. An essential textbook for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects.
Biologists are stepping up their efforts in understanding the biological processes that underlie disease pathways in the clinical contexts. This has resulted in a flood of biological and clinical data from genomic and protein sequences, DNA microarrays, protein interactions, biomedical images, to disease pathways and electronic health records. To exploit these data for discovering new knowledge that can be translated into clinical applications, there are fundamental data analysis difficulties that have to be overcome. Practical issues such as handling noisy and incomplete data, processing compute-intensive tasks, and integrating various data sources, are new challenges faced by biologists in the post-genome era. This book will cover the fundamentals of state-of-the-art data mining techniques which have been designed to handle such challenging data analysis problems, and demonstrate with real applications how biologists and clinical scientists can employ data mining to enable them to make meaningful observations and discoveries from a wide array of heterogeneous data from molecular biology to pharmaceutical and clinical domains.
Mapping the genomic landscapes is one of the most exciting frontiers of science. We have the opportunity to reverse engineer the blueprints and the control systems of living organisms. Computational tools are key enablers in the deciphering process. This book provides an in-depth presentation of some of the important computational biology approaches to genomic sequence analysis. The first section of the book discusses methods for discovering patterns in DNA and RNA. This is followed by the second section that reflects on methods in various ways, including performance, usage and paradigms.
This book presents innovative approaches from database researchers supporting the challenging process of knowledge discovery in biomedicine. Ranging from how to effectively store and organize biomedical data via data quality and case studies to sophisticated data mining methods, this book provides the state-of-the-art of database technology for life sciences and medicine. A valuable source of information for experts in life sciences who want to be updated about the possibilities of database technology in their field, this volume will also be inspiring for students and researchers in informatics who are keen to contribute to this emerging field of interdisciplinary research.
Advances in high-throughput biological methods have led to the publication of a large number of genome-wide studies in human and animal models. In this context, recent tools from bioinformatics and computational biology have been fundamental for the analysis of these genomic studies. The book Bioinformatics and Human Genomics Research provides updated and comprehensive information about multiple approaches of the application of bioinformatic tools to research in human genomics. It covers strategies analysis of genome-wide association studies, genome-wide expression studies and genome-wide DNA methylation, among other topics. It provides interesting strategies for data mining in human genomics, network analysis, prediction of binding sites for miRNAs and transcription factors, among other themes. Experts from all around the world in bioinformatics and human genomics have contributed chapters in this book. Readers will find this book as quite useful for their in silico explorations, which would contribute to a better and deeper understanding of multiple biological processes and of pathophysiology of many human diseases.
There is a lack of an exposition on interdisciplinary and innovative methods of data mining and visualization for biodata. This book fills the gap by introducing an interdisciplinary set of the most recent methods and references on novel techniques from artificial intelligence, data mining, engineering, pattern recognition, and ontological data mining fields that are applicable to bioinformatics. The latest novel approaches are explained in detail, their advantages and disadvantages are summarized, and pointers to the future development of new applications are given. By widening the pool from which biologists and bioinformaticians can adopt methods for biodata mining and visualization, computational data mining experts in nonbiological fields are also encouraged to utilize their expertise in order to contribute to the progress of computational biology, thus enhancing the collaboration between these two disciplines.
Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.
This timely book identifies and highlights the latest data mining paradigms to analyze, combine, integrate, model and simulate vast amounts of heterogeneous multi-modal, multi-scale data for emerging real-world applications in life science.The cutting-edge topics presented include bio-surveillance, disease outbreak detection, high throughput bioimaging, drug screening, predictive toxicology, biosensors, and the integration of macro-scale bio-surveillance and environmental data with micro-scale biological data for personalized medicine. This collection of works from leading researchers in the field offers readers an exceptional start in these areas.
This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of "omic" data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided with the knowledge needed to assess the requirements, computational approaches and outputs in disease biomarker research. Commentaries from guest experts are also included, containing detailed discussions of methodologies and applications based on specific types of "omic" data, as well as their integration. Covers the main range of data sources currently used for biomarker discovery Covers the main range of data sources currently used for biomarker discovery Puts emphasis on concepts, design principles and methodologies that can be extended or tailored to more specific applications Offers principles and methods for assessing the bioinformatic/biostatistic limitations, strengths and challenges in biomarker discovery studies Discusses systems biology approaches and applications Includes expert chapter commentaries to further discuss relevance of techniques, summarize biological/clinical implications and provide alternative interpretations