Download Free Biocomposites For Industrial Applications Book in PDF and EPUB Free Download. You can read online Biocomposites For Industrial Applications and write the review.

Biocomposites for High-Performance Applications: Current Barriers and Future Needs Towards Industrial Development focuses on future research directions that will make biocomposites a successful player in the field of high-strength structural applications. With contributions from eminent academic researchers and industrial experts who have first-hand experience on the advantages/disadvantages of biocomposites in their daily lives, the book examines the industrial development of biocomposite products, identifying the current barriers and their future industrial needs Topics covered include: recent research activities from academia in the biocomposite research field, valuable thoughts and insights from biocomposite manufacturing industries, the strength and weaknesses of biocomposite products, and the practical issues that need to be addressed to reach the next level. Highlights the practical issues involved in biocomposites research Contains contributions from eminent academic researchers and industrial experts Discusses recent research activities from academia in the biocomposite research field, along with valuable thoughts and insights from biocomposite manufacturing industries
Biocomposites for Industrial Applications: Construction, Biomedical, Transportation and Food Packaging reviews the properties and performance of these materials, with a focus on their intended applications. Sections cover their properties and performance, including processing conditions, structure and property relations. For biomedical applications, researchers need a broad understanding of conceptual design, physico-chemical properties, and cytotoxicity (orthopedic implants). As the usage of biocomposites has increased significantly over recent years, mainly due to the advantages these materials have when compared to synthetic composites, such as (i) renewability (ii) eco-friendly components, (iii) biodegradable aspects, and (iv) non-toxicity, this book provides a great update on the technology. These advantages will help to attract wider use in more lightweight-based applications such as (i) construction and building (ii) biomedical (iii) transportation (automotive, marine, and aerospace), and (iv) in food packaging. Covers recent applications in construction, transportation, food packaging and biomedical sectors Focuses on materials requirements, factors governing the properties of these materials and durability Discusses factors effecting processing conditions and recent advancements in design and fabrication Provides a detailed outline of experimental research in each chapter
Keeping in mind the advantages of bio-based materials, this book focuses on the potential efficacy of different biocomposites procured from diverse natural resources and the preparation and processing of the biocomposites to be used for a variety of applications. Each chapter gives an overview on a particular biocomposite material and its processin
This book is a printed edition of the Special Issue "Novel Biocomposite Engineering and Bio-Applications" that was published in Bioengineering
Since synthetic plastics derived from fossil resources are mostly non-biodegradable, many academic and industrial researchers have shifted their attention toward bio-based materials, which are more eco-friendly.Bio-Based Composites for High-Performance Materials: From Strategy to Industrial Application provides an overview of the state-of-art in bi
Biocomposites, formed by a matrix and a reinforcement of natural fibers, often mimic the structure of living materials and offer the strength of the matrix as well as biocompatibility. Being renewable, cheap, recyclable, and biodegradable, they have witnessed rapidly growing interest in terms of industrial and fundamental applications. This book focuses on fiber-based composites applied to biomedical and environmental applications. It presents a comprehensive survey of biocomposites from the existing literature, paying particular attention to various biomedical and environmental applications. The text describes mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of bionanocomposites and their applications. The book is the first of its kind to present all these topics together unlike most other books on nano-/biocomposites that are generally limited to their fundamentals, different methods of synthesis, and applications.
Biocomposites: Design and Mechanical Performance describes recent research on cost-effective ways to improve the mechanical toughness and durability of biocomposites, while also reducing their weight. Beginning with an introduction to commercially competitive natural fiber-based composites, chapters then move on to explore the mechanical properties of a wide range of biocomposite materials, including polylactic, polyethylene, polycarbonate, oil palm, natural fiber epoxy, polyhydroxyalkanoate, polyvinyl acetate, polyurethane, starch, flax, poly (propylene carbonate)-based biocomposites, and biocomposites from biodegradable polymer blends, natural fibers, and green plastics, giving the reader a deep understanding of the potential of these materials. Describes recent research to improve the mechanical properties and performance of a wide range of biocomposite materials Explores the mechanical properties of a wide range of biocomposite materials, including polylactic, polyethylene, polycarbonate, oil palm, natural fiber epoxy, polyhydroxyalkanoate, polyvinyl acetate, and polyurethane Evaluates the potential of biocomposites as substitutes for petroleum-based plastics in industries such as packaging, electronic, automotive, aerospace and construction Includes contributions from leading experts in this field
Biocomposite and Synthetic Composites for Automotive Applications provides a detailed review of advanced macro and nanocomposite materials and structures, and discusses their use in the transport industry, specifically for automotive applications. This book covers materials selection, properties and performance, design solutions, and manufacturing techniques. A broad range of different material classes are reviewed with emphasis on advanced materials and new research pathways where composites can be derived from agricultural waste in the future, as well as the development and performance of hybrid composites. The book is an essential reference resource for those researching materials development and industrial design engineers who need a detailed understanding of materials usage in transport structures. Life Cycle Assessment (LCA) analysis of composite products in automotive applications is also discussed, and the effect of different fiber orientation on crash performance. Synthetic/natural fiber composites for aircraft engine fire-designated zones are linked to automotive applications. Additional chapters include the application and use of magnesium composites compared to biocomposites in the automotive industry; autonomous inspection and repair of aircraft composite structures via vortex robot technology and its application in automotive applications; composites in a three-wheeler (tuk tuk); and thermal properties of composites in automotive applications. Covers advanced macro and nanocomposites used in automotive structures Emphasizes materials selection, properties and performance, design solutions, and manufacturing techniques Features case studies of successful applications of biocomposites in automotive structures
Natural/Biofiber composites are emerging as a viable alternative to glass fiber composites, particularly in automotive, packaging, building, and consumer product industries, and becoming one of the fastest growing additives for thermoplastics. Natural Fibers, Biopolymers, and Biocomposites provides a clear understanding of the present state
The book highlights the recent research developments in biocomposite design, mechanical performance and utility. It discusses innovative experimental approaches along with mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of biocomposites and their applications. It is useful for researchers developing biocomposite materials for biomedical and environmental applications.