Download Free Biocidal Book in PDF and EPUB Free Download. You can read online Biocidal and write the review.

The notion that contaminated environments in hospital settings significantly contribute to the risk of an individual acquiring an infection while hospitalized is continuously gaining recognition by the medical community. There is a clear correlation between the environmental bioburden present in a clinical setting and the risk of patients acquiring an infection. Thus using self-disinfecting surfaces can be a very important adjunct in the fight against nosocomial pathogens. This book reviews the increasing evidence that contaminated non-intrusive soft and hard surfaces located in the clinical surroundings are a source of nosocomial pathogens and focuses on the utility of copper containing materials in reducing bioburden and fighting hospital acquired infections. It also reviews other biocidal surface alternatives and the economics of using biocidal surfaces in a hospital environment. Finally, it discusses the pros and cons of existent disinfection modalities other than biocidal surfaces.
Organotin compounds, used as antifouling biocides since 1960, are chemical compounds that act as endocrine disrupters. It is not known how organotin compounds cause hormone disturbance, however, and many questions remain about their effect on aquatic organisms. Studies on organotin compounds have recently evolved, with many new findings reported. Following a worldwide ban on organotin compounds in 2008, alternative compounds will mainly be used, with the potential for coastal areas to become contaminated, causing, among other effects, cholinesterase inhibition in aquatic organisms. Use of alternative compounds must be controlled to avoid such errors. These and other findings are described and concisely summarized in this book, providing a useful reference in countries where alternative biocides are being considered. Included are studies on the effects on marine organisms, making this book an excellent aid to experts in environmental chemistry, to government organizations, and to students.
This Rapra Review Report examines the use of biocides in plastics with reference to material types and application requirements. The commonly available biocides are reviewed and details of their strengths and weaknesses are provided. The author reviews the frequently used test methods for fungi and bacteria, and, in an ever-changing regulatory environment, explores the influence of legislation on the current and future use of such biocides. This detailed and state-of-the-art review is supported by an indexed section containing several hundred key references and abstracts selected from the Polymer Library database.
This book is chiefly intended for those who are using microbicides for the protection of materials. Another purpose is to inform teachers and students working on biodeterioration and to show today's technical standard to those engaged in R&D activities in the microbicide field. When trying to classify, or to subclassify, material-protecting microbicides according to their mode of action, e.g. as membrane-active and electrophilic active ingredients, it turned out that a clear assignment was not always possible. For that reason the author has resorted to chemistry's principle of classifying according to groups of substances (e.g. alcohols, aldehydes, ketones, acids, esters, amides, etc.), thus providing the first necessary information about the micro bicides' properties. The description of the various groups of substances includes, whenever possible, an outline of the mode and mechanism of action of the active ingredients involved. The effective use of microbicides presupposes knowledge of their character istics. That is why the microbicides' chemico-physical properties, their toxicity, ecotoxicity, effectiveness, and effective spectrum are described in greater detail. As mentioned before, the characteristics of microbicides play an important role. They have to be suited to the intended application to avoid detrimental effects on the properties and the quality of the material to be protected; also production processes in which microbicides are used to avoid disturbances by microbial action must not be disturbed by the presence of those microbicides.
This updated and expanded second edition of Antiseptic Stewardship serves as a comprehensive reference guide to common biocidal active substances and antiseptic agents, examining their antimicrobial efficacy and potential to induce cell tolerance, including cross-tolerance to other biocidal agents, as well as cross-resistance to antibiotics. In addition, the book discusses the appropriate and targeted use of biocidal active substances by balancing their expected health benefits against the likelihood of clinically relevant resistance, including misuse and overuse of some products during the COVID-19 pandemic. This guide, which focuses on human, veterinary and household products, helps readers make informed decisions about disinfectants and antiseptic products based on their composition. Various biocidal active substances and antiseptic agents are used for disinfection and antisepsis in healthcare, veterinary medicine, animal production and household products. However, not all of them provide significant health benefits, especially for some products used in human medicine. Antimicrobial soaps, surface disinfectants, instrument disinfectants and wound antiseptics may contain one or more biocidal active ingredients with comparable antimicrobial efficacy, but with large differences in their potential for microbial adaptation and tolerance. Increased bacterial tolerance has been described for several biocidal active substances and antiseptics, sometimes including cross-resistance to antibiotics. The book is therefore intended to help reduce unnecessary selection pressure on emerging pathogens, including by describing non-biocidal alternatives for specific antimicrobial applications, with the aim of retaining the powerful biocidal agents and antiseptics for those applications where there is a clear health benefit (e.g. reduction of healthcare-associated infections). The book addresses healthcare, industrial and veterinary professionals as well as educated laypersons interested in efficient and controlled disinfection strategies.
Highly respected, established text – a definitive reference in its field – covering in detail many methods of the elimination or prevention of microbial growth "highly recommended to hospital and research personnel, especially to clinical microbiologists, infectioncontrol and environmental-safety specialists, pharmacists, and dieticians." New England Journal of Medicine WHY BUY THIS BOOK? Completely revised and updated to reflect the rapid pace of change in this area Updated material on new and emerging technologies, focusing on special problems in hospitals, dentistry and pharmaceutical practice Gives practical advise on problems of disinfection and antiseptics in hospitals Discusses increasing problems of natural and acquired resistance to antibiotics New contributors give a fresh approach to the subject and ensure international coverage Systematic review of sterilization methods, with uses and advantages outlined for each Evaluation of disinfectants and their mechanisms of action
Biocidal polymers are designed to inhibit or kill microorganisms such as bacteria, fungi and protozoans. This book summarizes recent findings in the synthesis, modification and characterization of various antimicrobial polymers ranging from plastics and elastomers to biomimetic and biodegradable polymers. Modifications with different antimicrobial agents as well as antimicrobial testing methods are described in a comprehensive manner.
Numerous applications for biocides have been found in fields as diverse as ethical pharmaceuticals and cat litter products. The aim of this book is two-fold: to provide a comprehensive guide to the use of biocides across a range of applications; and to aid in the selection of a biocide that is "fit for purpose". It covers a cross-section of traditional measures, novel ideas and innovative developments, as well as addressing the biocides market, the political outlook and future trends of biocide use. With contributions by acknowledged experts in the field, Industrial Biocides is a unique title that will be welcomed by many in industry, including industrial and water chemists, microbiologists, and plant and environment managers.
A comprehensive, global review of the impact ships have on the environment, covering pollutant discharges, non-pollutant impacts and international legislation.
This book provides an up-to-date treatment of antioxidant and biocidal compounds mainly from Latin American plants. New antimicrobials, insecticides and antioxidants are compiled in a single source for the first time based on the research and knowledge of several internationally renowned research groups. This book is organized in three sections: Part I provides a general overview and perspectives on antioxidant, medicinal and biocidal plant compounds; Part II provides information on plant antioxidants isolated from a wide range of species; and Part III describes insecticidal, antimicrobial and other biocidal activities based on peptides, phytoecdysteroids, alkaloids, polyphenols, terpenoids and other allelochemicals.