Download Free Biochemistry Of Foods Book in PDF and EPUB Free Download. You can read online Biochemistry Of Foods and write the review.

Biochemistry of Foods
The biochemistry of food is the foundation on which the research and development advances in food biotechnology are built. In Food Biochemistry and Food Processing, lead editor Y.H. Hui has assembled over fifty acclaimed academicians and industry professionals to create this indispensable reference and text on food biochemistry and the ever-increasing development in the biotechnology of food processing. While biochemistry may be covered in a chapter or two in standard reference books on the chemistry, enzymes, or fermentation of food, and may be addressed in greater depth by commodity-specific texts (e.g., the biotechnology of meat, seafood, or cereal), books on the general coverage of food biochemistry are not so common. Food Biochemistry and Food Processing effectively fills this void. Beginning with sections on the essential principles of food biochemistry, enzymology and food processing, the book then takes the reader on commodity-by-commodity discussions of biochemistry of raw materials and product processing. Later sections address the biochemistry and processing aspects of food fermentation, microbiology, and food safety. As an invaluable reference tool or as a state-of-the-industry text, Food Biochemistry and Food Processing fully develops and explains the biochemical aspects of food processing for scientist and student alike.
Understanding the biochemistry of food is basic to all other research and development in the fields of food science, technology, and nutrition, and the past decade has seen accelerated progress in these areas. Advances in Food Biochemistry provides a unified exploration of foods from a biochemical perspective. Featuring illustrations to elucidate m
This book provides an excellent platform for understanding the chemical processes involved in food transformation. Starting with the examination of major food components, such as water, carbohydrates, lipids, proteins and minerals, the author further introduces the biochemistry of digestion and energy metabolism of food ingredients. The last section of the book is devoted to modern food technologies and their future perspectives.
Lipids in Foods: Chemistry, Biochemistry and Technology provides basic information on the biochemistry and technology of the fatty acids or lipids. This book notes that natural and processed fats and oils, whether of animal or vegetable origin, play a significant role in the economy of several countries including both oil-producers and oil-users. These materials are used extensively, but not exclusively, in the food industry. The first 10 chapters cover the basic chemistry and biochemistry of the fatty acids and their natural derivatives. These topics include an account of the chemical structure, separation, analysis, biochemistry, physical properties, chemical properties, and synthesis of these compounds. The remaining chapters include the recovery of fats and oils from their sources and the processes of refining, bleaching, hydrogenation, deodorization, fractionating, and interesterification. A segment is devoted to margarines and shortenings and to the problems of flavor stability and antioxidants. This text will be valuable to students wishing to know more about lipids and to those involved in this field of study.
This book provides a scientific analysis of the effects of foods and nutrients on the NO pathway in humans. Contributors to the book clarify novel chemical and biochemical connections between dietary intake and nitric oxide, particularly in cases of NO deficiency. In this context, the book addresses how specific foods can restore nitric oxide production and bioactivity—without medical interventions. A variety of evidential data is presented showing how NO-rich dietary elements are implicated in disease prevention and modulation. The book offers new knowledge for food technologists, food manufacturers, nutrition researchers, and healthcare practitioners. From the Foreword by Louis J. Ignarro, Nobel Laureate in Physiology/Medicine "The body of work contained in this volume, linking NO to food and nutrition, may have revolutionary implications in terms of developing strategies to combat heart disease and many other contemporary diseases associated with NO deficiency. Proving that a natural and inexpensive regimen of foods rich in nitric oxide activity does restore NO homeostasis can have profound effects on human health…The research presented in this text provides an important expansion of NO work…(and) Dr. Nathan Bryan, the editor…is to be congratulated for…communicating new knowledge and assembling the world's experts in their fields."
Enhance your program by offering a Food Science course! This high-interest Food Science text teaches students to use the scientific method as they study the biological and chemical bases of food and nutrition.
Chemical Changes During Processing and Storage of Foods: Implications for Food Quality and Human Health presents a comprehensive and updated discussion of the major chemical changes occurring in foods during processing and storage, the mechanisms and influencing factors involved, and their effects on food quality, shelf-life, food safety, and health. Food components undergo chemical reactions and interactions that produce both positive and negative consequences. This book brings together classical and recent knowledge to deliver a deeper understanding of this topic so that desirable alterations can be enhanced and undesirable changes avoided or reduced. Chemical Changes During Processing and Storage of Foods provides researchers in the fields of food science, nutrition, public health, medical sciences, food security, biochemistry, pharmacy, chemistry, chemical engineering, and agronomy with a strong knowledge to support their endeavors to improve the food we consume. It will also benefit undergraduate and graduate students working on a variety of disciplines in food chemistry - Offers a comprehensive overview of the major chemical changes that occur in foods at the molecular level and discusses the positive and negative effects on food quality and human health - Describes the mechanisms of these chemical changes and the factors that impede or accelerate their occurrence - Helps to solve daily industry problems such as loss of color and nutritional quality, alteration of texture, flavor deterioration or development of off-flavor, loss of nutrients and bioactive compounds or lowering of their bioefficacy, and possible formation of toxic compounds
Plant foods are an essential part of our daily diet and constitute one of the highest contributors to the world economy. These foods are rich in phenolic compounds, which play a significant role in maintaining our health. This textbook presents a comprehensive overview of the chemistry, biochemistry and analysis of phenolic compounds present in a variety of foods. The text can be used as a singular source of knowledge for plant food science and technology, covering all of the important chemical, biochemical and analytical aspects needed for a thorough understanding of phenolic antioxidants in foods. Phenolic Antioxidants In Foods: Chemistry, Biochemistry, and Analysis is comprised of three sections. The first section covers the basic concepts of antioxidants, their chemistry and their chemical composition in foods, providing a detailed introduction to the concept. The second section covers the biochemical aspects of phenolic antioxidants, including their biosynthetic pathways, biological effects and the molecular mechanism of antioxidant effects in the biological system. This section promotes an understanding of the fundamental biochemical reactions that take place in foods and after digestion and absorption. The third section covers the analytical chemistry used in the analysis of phenolic antioxidants in foods, including the basic analytical procedures, methods for analysis and chromatographic and spectroscopic analyses. This section is significant for aspiring food chemists and manufacturers to evaluate the nature and chemistry of phenolic antioxidants in foods. Featuring helpful quizzes, section summaries, and key chapter points, this textbook is the perfect learning tool for advanced chemistry undergraduates and post-graduates looking to gain a fundamental understanding of phenolic antioxidants in food products.
Maintaining the high standards that made the previous editions such well-respected and widely used references, Food Lipids: Chemistry, Nutrition, and Biotechnology, Fourth Edition provides a new look at lipid oxidation and highlights recent findings and research. Always representative of the current state of lipid science, this edition provides 16 new chapters and 21 updated chapters, written by leading international experts, that reflect the latest advances in technology and studies of food lipids. New chapters Analysis of Fatty Acid Positional Distribution in Triacylglycerol Physical Characterization of Fats and Oils Processing and Modification Technologies for Edible Oils and Fats Crystallization Behavior of Fats: Effect of Processing Conditions Enzymatic Purification and Enrichment and Purification of Polyunsaturated Fatty Acids and Conjugated Linoleic Acid Isomers Microbial Lipid Production Food Applications of Lipids Encapsulation Technologies for Lipids Rethinking Lipid Oxidation Digestion, Absorption and Metabolism of Lipids Omega-3 Polyunsaturated Fatty Acids and Health Brain Lipids in Health and Disease Biotechnologically Enriched Cereals with PUFAs in Ruminant and Chicken Nutrition Enzyme-Catalyzed Production of Lipid Based Esters for the Food Industry: Emerging Process and Technology Production of Edible Oils Through Metabolic Engineering Genetically Engineered Cereals for Production of Polyunsaturated Fatty Acids The most comprehensive and relevant treatment of food lipids available, this book highlights the role of dietary fats in foods, human health, and disease. Divided into five parts, it begins with the chemistry and properties of food lipids covering nomenclature and classification, extraction and analysis, and chemistry and function. Part II addresses processing and food applications including modification technologies, microbial production of lipids, crystallization behavior, chemical interesterification, purification, and encapsulation technologies. The third part covers oxidation, measurements, and antioxidants. Part IV explores the myriad interactions of lipids in nutrition and health with information on heart disease, obesity, and cancer, with a new chapter dedicated to brain lipids. Part V continues with contributions on biotechnology and biochemistry including a chapter on the metabolic engineering of edible oils.