Download Free Biochemical Characterization Of Plasmodium Falciparum Heat Shock Protein 70 Book in PDF and EPUB Free Download. You can read online Biochemical Characterization Of Plasmodium Falciparum Heat Shock Protein 70 and write the review.

This new edition describes the role of heat shock proteins in the life cycle of malaria parasites, particularly in the context of intracellular parasite stages. Thoroughly revised, this work provides a general introduction to the structural and functional features of heat shock proteins with a special focus on their role as molecular chaperones in ensuring protein quality control. The emphasis is on the heat shock protein families from Plasmodium falciparum, and their role in proteostasis and the development of malaria pathology. Moreover, the authors explore the latest prospects of targeting heat shock proteins in antimalarial drug discovery either directly or in combination therapies. Readers will experience a functional analysis of the individual families of heat shock proteins and their cooperation in functional networks, including both the parasite-resident proteome and the exportome released into host cells during intracellular stages. Subcellular and extracellular organelles such as the apicoplast and the Maurer’s Clefts associated with Plasmodium species are discussed in detail. The book highlights the role of heat shock proteins in the development and function of these structures. Biochemical expertise and the inclusion of novel therapeutic solutions make this collection a unique reference for experts in heat shock protein research, parasitology and infectious diseases, cell stress, molecular biology and drug discovery. Not least, advances in malaria control will contribute to ending epidemics and ensuring healthy lives in line with the UN Sustainable Development Goals.
ClpB is a molecular chaperone that is essential for infectivity and pathogen survival in a host. It belongs to the AAA+ protein family, which cooperates with the DnaK chaperone system to reactivate aggregated proteins. In this study, we purified and then studied the biochemical properties of the apicoplast targeted ClpB isoform from the malaria parasite Plasmodium falciparum: PfClpB1. Plasmodium falciparum is the parasite responsible for the most severe form of malaria. In contrast to the parasitophorous vacuole targeted PfClpB2 from Plasmodium falciparum which contains all characteristic AAA+ sequence motifs, PfClpB1 also includes a 52-residue long non-conserved insert in the middle domain. The ATPase activity study shows that PfClpB1 hydrolyzes ATP in presence of Poly-lysine and [alpha]-casein. Similar to most AAA+ ATPases, addition of ATP induces hexamer formation in PfClpB1. Lastly, PfClpB1 reactivates aggregated firefly luciferase. However, PfClpB1 is unable to efficiently reactivated luciferase in the presence of the E. coli DnaK chaperone system or human Hsp70 and Hsp40 (Hdj1). This can be explained by the extra middle domain sequence of PfClpB1. Our data may suggest that PfClpB1 activity is essential for Plasmodium falciparum survival by preserving the activity of apicoplast proteins.