Download Free Biochemical And Physiological Aspects Of Ethylene Production In Lower And Higher Plants Book in PDF and EPUB Free Download. You can read online Biochemical And Physiological Aspects Of Ethylene Production In Lower And Higher Plants and write the review.

With the demonstration of the "triple response" in plants by Neljubow at the turn of the century, ethylene has been identified as a substance specifically affecting plant growth. Yet it took a few more decades to show that ethylene is a naturally occurring product of plants having all the characteristics of a phytohormone. Ever since much effort has been devoted to a wide variety of physiological and biochemical problems relevant to ethylene. A first meeting was organized in Israel in 1984 to bring together many people active in this rapidly expanding field of experimental research. It is the aim of the present symposium to provide once more a forum at which researchers might expose and comment progress in their work over the last few years. Speakers were invi ted and their contri buti ons ordered ina number of sessions, each of which was centered on a particular topiC. Much of the benefit came from ensuing discussion sessions which were conducted with much competence and expertise by Anderson, Ben-Arie, Goren, Morgan and Osborne. All of these colleagues are recognized leaders in ethylene research today and the organizers owe a very special gratitude to them for their substantial contribution to the programme. It is well to remember the friendly atmosphere, so essential to the success of the whole meeting and so much enjoyed by every partiCipant. Prompt publi ca tion of the papers was made possi ble by the camera-ready procedure offered by the publisher.
Coupled with biomechanical data, organic geochemistry and cladistic analyses utilizing abundant genetic data, scientific studies are revealing new facets of how plants have evolved over time. This collection of papers examines these early stages of plant physiology evolution by describing the initial physiological adaptations necessary for survival as upright structures in a dry, terrestrial environment. The Evolution of Plant Physiology also encompasses physiology in its broadest sense to include biochemistry, histology, mechanics, development, growth, reproduction and with an emphasis on the interplay between physiology, development and plant evolution. - Contributions from leading neo- and palaeo-botanists from the Linnean Society - Focus on how evolution shaped photosynthesis, respiration, reproduction and metabolism. - Coverage of the effects of specific evolutionary forces -- variations in water and nutrient availability, grazing pressure, and other environmental variables
Presented here is another classic from this series and deals with general aspects of micropropagation of plants for commercial exploitation. It includes chapters on setting up a commercial laboratory, meristem culture, somatic embryogenesis, factors affecting micropropagation, disposable vessels, vitrification, acclimatization, induction of rooting, artificial substrates, cryopreservation and artificial seed. Special emphasis is given on modern approaches and developing technologies such as automation and bioreactors, robots in transplanting, artificial intelligence, information management and computerized greenhouses for en masse commercial production of plants.
Ethylene in Plant Biology, Second Edition provides a definitive survey of what is currently known about this structurally simplest of all plant growth regulators. This volume contains all new material plus a bibliographic guide to the complete literature of this field. Progress in molecular biology and biotechnology as well as biochemistry, plant physiology, development, regulation, and environmental aspects is covered in nine chapters co-authored by three eminent authorities in plant ethylene research. This volume is the modern text reference for all researchers and students of ethylene in plant and agricultural science. - Completely updated - Concise, readable style for students and professional - Contains an extensive bibliographic guide to the original literature - Well illustrated with diagrams and photographs - Thorough coverage of: ethylene and ethephon roles and effects stress ethylene, biosynthesis of ethylene, molecular biology of ethylene, action of ethylene, agricultural uses of ethylene
The inflorescence of the monoecious maize plant is unique among the Gramineae in the sharp separation of the male and female structures. The male tassel at the terminus of the plant most often sheds pollen before the visual appearance of the receptive silks of th the female ear at a lateral bud, normally at the 10 leaf [I]. Earlier studies examined the ontogeny of the growing tissues beginning with the embryo in the kernel through to the obvious protuberances of the growing point as the kernel germinates. The differentiated developing soon-to-become tassel and the lateral bulges that develop into the ears on the lateral buds become apparent very early in the germinating kernel [2, 3, 46]. A certain number of cells are destined for tassel and ear development [8]. As the plant develops, there is a phase transition [\3, 16] from the vegetative lateral buds to the reproductive lateral buds. This change in phase has been ascribed to genotypic control as evidenced in the differences among different genotypes in the initiation of the reproductive [I]. The genetic control of tassel and ear initiation has been gleaned from anatomical observations. Lejeune and Bernier [I2] found that maize plants terminate the initiation of additional axillary meristems at the time of tassel initiation. This would indicate that the top-most ear shoot is initiated on the same day as the initiation of tassel development and this event signals the end of the undifferentiated growing point.
Focusing exclusively on postharvest vegetable studies, this book covers advances in biochemistry, plant physiology, and molecular physiology to maximize vegetable quality. The book reviews the principles of harvest and storage; factors affecting postharvest physiology, calcium nutrition and irrigation control; product quality changes during handling and storage; technologies to improve quality; spoilage factors and biocontrol methods; and storage characteristics of produce by category. It covers changes in sensory quality such as color, texture, and flavor after harvest and how biotechnology is being used to improve postharvest quality.
The secretory activity of plants is a manifestation of the fundamental property of all living organisms: the ability to exchange substances and energy with the environment. This book summarizes today's knowledge of all such secretory activities of higher plants. It equally considers the cellular aspects, intratissular and external secretion, gas excretion and the excretion of substances under extreme conditions as well as the biological effects of plant excreta.
Fruit technology draws on biology and engineering to maintain quality during storage, distribution, and marketing. This book focuses on the biological processes that determine appearance, texture, taste, nutritional value, and flavor of fleshy fruits. It also focuses on the ways by which these biological processes can be manipulated to maximize quality for the consumer. It discusses the advances in the understanding of these procedures at the molecular level and the mode of action and limitations of current technology for postharvest handling of fruits. A concluding chapter examines prospects for the genetic control of fruit development, composition, and quality.
It is over 20 years since the publication of A.c. Hulme's two volume text on The Biochemistry of Fruits and thei.r Products. Whilst the bulk of the information contained in that text is still relevant it is true to say that our understanding of the biochemical and genetic mech
Plant Hormones: Biosynthesis and Mechanisms of Action is based on research funded by the Chinese government's National Natural Science Foundation of China (NSFC). This book brings a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions. With growing understanding of hormone biology comes new outlooks on how mankind values and utilizes the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner. This book is a comprehensive description of all major plant hormones: how they are synthesized and catabolized; how they are perceived by plant cells; how they trigger signal transduction; how they regulate gene expression; how they regulate plant growth, development and defense responses; and how we measure plant hormones. This is an exciting time for researchers interested in plant hormones. Plants rely on a diverse set of small molecule hormones to regulate every aspect of their biological processes including development, growth, and adaptation. Since the discovery of the first plant hormone auxin, hormones have always been the frontiers of plant biology. Although the physiological functions of most plant hormones have been studied for decades, the last 15 to 20 years have seen a dramatic progress in our understanding of the molecular mechanisms of hormone actions. The publication of the whole genome sequences of the model systems of Arabidopsis and rice, together with the advent of multidisciplinary approaches has opened the door to successful experimentation on plant hormone actions. - Offers a comprehensive description of all major plant hormones including the recently discovered strigolactones and several peptide hormones - Contains a chapter describing how plant hormones regulate stem cells - Offers a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions - Discusses the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner