Download Free Biobanks As Essential Tools For Translational Research The Belgian Landscape Book in PDF and EPUB Free Download. You can read online Biobanks As Essential Tools For Translational Research The Belgian Landscape and write the review.

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Part I Setting the scene -- Introduction: Individual rights, the public interest and biobank research 4000 (8) -- Genetic data and privacy protection -- Part II GDPR and European responses -- Biobank governance and the impact of the GDPR on the regulation of biobank research -- Controller' and processor's responsibilities in biobank research under GDPR -- Individual rights in biobank research under GDPR -- Safeguards and derogations relating to processing for archiving purposes in the scientific purposes: Article 89 analysis for biobank research -- A Pan-European analysis of Article 89 implementation and national biobank research regulations -- EEA, Switzerland analysis of GDPR requirements and national biobank research regulations -- Part III National insights in biobank regulatory frameworks -- Selected 10-15 countries for reports: Germany -- Greece -- France -- Finland -- Sweden -- United Kingdom -- Part IV Conclusions -- Reflections on individual rights, the public interest and biobank research, ramifications and ways forward. .
"Human tissue and biobank research is of increasing importance for understanding the causes of widespread diseases and developing effective therapies. However, while the success of biobank research depends on the availability of a large number of samples and the consolidation of collections across country borders is very desirable from the perspective of researchers, the legal and ethical requirements for the procurement, storage and use of human tissue samples are rather heterogeneous across different countries. Moreover, the lack of comprehensive supranational regulation on human tissue and biobanking can be seen as posing a serious threat to transnational biomedical research. Against this background, it was one of the aims of the EU-funded Tiss.EU project ('Evaluation of Legislation and Related Guidelines on the Procurement, Storage and Transfer of Human Tissues and Cells in the European Union--an Evidence-Based Impact Analysis') to analyse the ethical and legal regulation of human tissue and biobank research across the 27 European Member States plus Switzerland. The results of nine international workshops and three conferences are gathered in this volume. While the country reports evaluate the implementation of ethical and legal guidelines at a national level, point out their strengths and deficits, and, where required, create an evidence base for the revision of said legislation, the conference reports address more general ethical and legal issues in this field. The volume is completed by a final presentation of project's results"--Publisher's description
These best practice guidelines are intended to serve as a target for the quality management of biological resource center collections. They are the result of discussions held by OECD member countries together with a number of key partner countries ...
"In the new 2016 version of the ethical guidelines, CIOMS provides answers to a number of pressing issues in research ethics. The Council does so by stressing the need for research having scientific and social value, by providing special guidelines for health-related research in low-resource settings, by detailing the provisions for involving vulnerable groups in research and for describing under what conditions biological samples and health-related data can be used for research."--Page 4 de la couverture.
This volume is the first comprehensive text on human biobanking, authored by scientists and regulatory officers who have led the field over the past 10 years. It covers biobanking issues and its importance in advancing the field of research in cancer, cardiovascular, metabolic, and other diseases. Biobanks of human specimens have become the cornerstone for research on human health that harnesses the power of “omics” technologies to identify biomarkers for disease susceptibility. Biobanks are an essential component of the development of personalized medicine, which relies on the molecular analysis of biospecimens that are truly representative of individuals and of diseases. Over the past decade, biobanking has been the focus of major investments and developments aimed at developing appropriate infrastructure, methods, networking practice and evidence-based pre-analytical procedures. This volume explores topics including specimen storage, protocol design, specimen collection, pre-analytical processing and preservation, long-term storage, retrieval and separation, and distribution to analytical laboratory platforms. These activities are extremely complex and are essential for biomedical and biotechnological developments and this text provides critical information about biobanking for the development of future forms of medicine.​
International biobank collaborations allow for studies with large number of subjects where generalizability of findings across populations can be investigated, which means establishing quality criteria concerning the nature of the sample, conditions of sample storage, and the adequacy of available information is of vital importance. Methods in Biobanking brings together contributions from experts in the field in order to aid in the establishment of this much needed consistency. The volume discusses how to use existing collections of biological material to answer significant questions concerning the cause of disease without violating the personal integrity of participating sample donors, the ethical issues surrounding biobanks, guidelines for the use of coding systems and the use of biocomputing and registry linkages in research projects, as well as many other key subjects. As a volume in the highly successful Methods in Molecular BiologyTM series, this collection provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and cutting-edge, Methods in Biobanking seeks to provide scientists with the tools necessary to take advantage of the tremendous current resources of the world’s biobanks and strengthen those resources for the future.
The central aim of this publication is to consider the key elements of a modern, comprehensive, and effective legal framework for successful management of protected areas. They provide practical guidance for all those involved in developing, improving, or reviewing national legislation on protected areas, be they legal drafters and practitioners, protected area managers, interested NGOs, or scholars. These guidelines include fifteen case studies, eight dealing with the protected area legislation of individual countries and six cases dealing with specific sites providing fundamental solutions that stand the test of time.
Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.
In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.