Download Free Bioactive Functionalisation Of Silicones With Polysaccharides Book in PDF and EPUB Free Download. You can read online Bioactive Functionalisation Of Silicones With Polysaccharides and write the review.

This book covers the functionalisation of silicone surfaces with polysaccharides to improve their antimicrobial and antifouling properties, thus reducing the implant-related infections. The authors describe how silicone surfaces were chosen because silicone exhibits excellent biocompatible properties and is already being used for medical implants such as catheters, breast implants, prosthetics etc. The potential of polysaccharides such as cellulose, chitosan, hyaluronic acid, and other natural substances such as natural surfactants as coatings for silicones are also discussed, their effects are evaluated. With the aging of the population, the number of medical implants is growing and with it the number of infections associated with the use of implants.
Materials for Biomedical Engineering: Bioactive Materials for Antimicrobial, Anticancer, and Gene Therapy offers an up-to-date perspective on recent research findings regarding the application and use of these materials for disease treatment and prevention. Various types of currently investigated bioactive materials, including therapeutic nanostructures and antimicrobial hydrogels are discussed, as are their properties, impact and future role in therapeutic applications. The book will be extremely useful for new researchers who want to explore more information on the use of bioactive materials or for more experienced researchers who are interested in new trends and specific applications. - Provides knowledge on the range of bioactive materials available, enabling the reader to make optimal materials selection decisions - Contains detailed information on current and proposed applications of the latest bioactive materials to empower readers to design innovative products and processes - Presents a strong emphasis on chemistry and the physico-chemical characterization of these materials and their application in antimicrobial, anticancer and gene therapy
Renowned experts give all essential aspects of the techniques and applications of graft copolymers based on polysaccharides. Polysaccharides are the most abundant natural organic materials and polysaccharide based graft copolymers are of great importance and widely used in various fields. Natural polysaccharides have recently received more attention due to their advantages over synthetic polymers by being non-toxic, biodegradable and available at low cost. Modification of polysaccharides through graft copolymerization improves the properties of polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye-ability and resistance towards acid-base attack and abrasion. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil-water emulsions, purification of water etc.
This book fills the gap between fundamental and applied research in the use of nanomaterials in biomedical applications, covering the most relevant areas, such as the fundamental concepts of the preparation of nanostructures and regulatory requirements for their safe use in biomedical devices. It also critically discusses what has been achieved in the field, and what needs to be urgently addressed and reviews the state-of-the-art medical uses of nanomaterials for treating damaged organs and tissues. Combining the expertise of clinical researchers working in the field of tissue engineering and novel materials, the book explores the main topics regarding the characterization of materials, specific organ-oriented biomaterials and their applications, as well as regulations and safety. Further, it also examines recent advances, difficulties, and clinical requirements in terms of human bone, cornea, heart, skin and the nervous system, allowing readers to gain a clear and comprehensive understanding of current nanomaterial use in biomedical applications and devices, together with the challenges and future trends. This book is a valuable tool for multidisciplinary scientists and experts interested in fundamental concepts and synthetic routes for preparing nanomaterials. It is also of interest to students and researchers involved in cross-disciplinary research in nanomaterials for clinical applications and offers practical insights for clinicians as well as engineers and materials scientists working in nanoengineering.
Marine organisms have been under research for the last decades as a source for different active compounds with various biological activities and application in agriculture, pharmacy, medicine, environment, and industries. Marine polysaccharides from these active compounds are used as antibacterial, antiviral, antioxidant, anti-inflammation, bioremediations, etc. During the last three decades, several important factors that control the production of phytoplankton polysaccharides have been identified such as chemical concentrations, temperature, light, etc. The current book includes 14 chapters contributed by experts around the world; the chapters are categorized into three sections: Marine Polysaccharides and Agriculture, Marine Polysaccharides and Biological Activities, and Marine Polysaccharides and Industries.
"Principles of Polymer Science introduces several basic and advanced aspects of polymers for the undergraduate and graduate students in chemistry, chemical engineering and materials science. The second and thoroughly revised edition includes the technical aspects of synthesis, characterization, behaviour and technology in a straightforward and lucid manner. Separate chapters on natural, inorganic and specialty polymers would attract readers from interdisciplinary courses."--BOOK JACKET.
This authoritative reference work presents comprehensive information about one of the most important and most wide-spread classes of (bio)organic compounds: the polysaccharides. The comprehensive and thoroughly up-to-date handbook presents the sources, identification, analysis, biosynthesis, biotechnology and applications of important polysaccharides likes starches, cellulose, chitin, gum and microbial polysaccharides. Polysaccharides can exhibit complex structure and various functional activities. These bio macromolecules can therefore serve as raw materials for various different materials, e.g. rayon, cellulose acetate, celluloid and nitrocellulose; and they find multiple applications, for instance as surgical threads (chitin), as sources of energy, dietary fibers, as blood flow adjuvants, in cosmetics, emulsion stabilizers, film formers, binders, viscosity increasing agents or skin conditioning agenta, as food additives in gums, chewing gum bases and as vaccines. Polysaccharides form the basis for useful products, like xanthan gum, dextran, welan gum, gellan gum, diutan gum and pullulan. Some of the polysaccharide-derived products have interesting and useful properties and show biological activities, such as immunomodulatory, antibacterial, anti-mutagenic, radioprotective, anti-oxidative, anti-ulcer, antidepressant, anti-septicaemic or anti-inflammatory activities. All these applications and properties of polysaccharides are for the first time compiled in a thorough and comprehensive overview in the present work. This reference work is organized thematically in four parts: Part I. Polysaccharides: Occurrence, Structure, Distribution and Biotechnology. Part II. Methods. Part III. Bioactive Polysaccharides. Part IV. Polysaccharides as Food. This reference work is edited by experienced experts, all chapters are written by well recognized international specialists. It is useful to all those working in the field of botany, phytochemistry, pharmacy, drug delivery, molecular biology, metabolomics, forestry, environment, conservation, biotechnology and NGOs working for forest protection.
Nanotechnology in biology and medicine: Research advancements & future perspectives is focused to provide an interdisciplinary, integrative overview on the developments made in nanotechnology till date along with the ongoing trends and the future prospects. It presents the basics, fundamental results/current applications and latest achievements on nanobiotechnological researches worldwide scientific era. One of the major goals of this book is to highlight the multifaceted issues on or surrounding of nanotechnology on the basis of case studies, academic and theoretical articles, technology transfer (patents and copyrights), innovation, economics and policy management. Moreover, a large variety of nanobio-analytical methods are presented as a core asset to the early career researchers. This book has been designed for scientists, academician, students and entrepreneurs engaged in nanotechnology research and development. Nonetheless, it should be of interest to a variety of scientific disciplines including agriculture, medicine, drug and food material sciences and consumer products. Features It provides a thoroughly comprehensive overview of all major aspects of nanobiotechnology, considering the technology, applications, and socio-economic context It integrates physics, biology, and chemistry of nanosystems It reflects the state-of-the-art in nanotechnological research (biomedical, food, agriculture) It presents the application of nanotechnology in biomedical field including diagnostics and therapeutics (drug discovery, screening and delivery) It also discusses research involving gene therapy, cancer nanotheranostics, nano sensors, lab-on-a-chip techniques, etc. It provides the information about health risks of nanotechnology and potential remedies. It offers a timely forum for peer-reviewed research with extensive references within each chapter
The layer-by-layer (LbL) deposition technique is a versatile approach for preparing nanoscale multimaterial films: the fabrication of multicomposite films by the LbL procedure allows the combination of literally hundreds of different materials with nanometer thickness in a single device to obtain novel or superior performance. In the last 15 years the LbL technique has seen considerable developments and has now reached a point where it is beginning to find applications in bioengineering and biomedical engineering. The book gives a thorough overview of applications of the LbL technique in the context of bioengineering and biomedical engineering where the last years have witnessed tremendous progress. The first part familiarizes the reader with the specifics of cell-film interactions that need to be taken into account for successful application of the LbL method in biological environments. The second part focuses on LbL-derived small drug delivery systems and antibacterial agents, and the third part covers nano- and microcapsules as drug carriers and biosensors. The fourth and last part focuses on larger-scale biomedical applications of the LbL method such as engineered tissues and implant coatings.
Silicones for Personal Care, 2nd Edition provides invaluable information to the cosmetic chemist about the basic chemistry and properties of these important silicones. This book stresses the various steps in the synthesis of silicone compounds¿construction, functionalization and derivitization¿which have a profound impact on performance. Topics include:Basic silicone materials Emulsions Silicone surfactants Silicone esters Silicone complexes Silicone resins And much more!