Download Free Bio Inspired Self Organizing Robotic Systems Book in PDF and EPUB Free Download. You can read online Bio Inspired Self Organizing Robotic Systems and write the review.

Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.
A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.
An overview of the basic concepts and methodologies of evolutionary robotics, which views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention.
Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.
The book’s contributing authors are among the top researchers in swarm intelligence. The book is intended to provide an overview of the subject to novices, and to offer researchers an update on interesting recent developments. Introductory chapters deal with the biological foundations, optimization, swarm robotics, and applications in new-generation telecommunication networks, while the second part contains chapters on more specific topics of swarm intelligence research.
Identifying Emerging Trends in Technological Innovation Doctoral programs in science and engineering are important sources of innovative ideas and techniques that might lead to new products and technological innovation. Certainly most PhD students are not experienced researchers and are in the process of learning how to do research. Nevertheless, a number of empiric studies also show that a high number of technological innovation ideas are produced in the early careers of researchers. The combination of the eagerness to try new approaches and directions of young doctoral students with the experience and broad knowledge of their supervisors is likely to result in an important pool of innovation potential. The DoCEIS doctoral conference on Computing, Electrical and Industrial En- neering aims at creating a space for sharing and discussing ideas and results from doctoral research in these inter-related areas of engineering. Innovative ideas and hypotheses can be better enhanced when presented and discussed in an encouraging and open environment. DoCEIS aims to provide such an environment, releasing PhD students from the pressure of presenting their propositions in more formal contexts.
Seeking new methods to satisfy increasing communication demands, researchers continue to find inspiration from the complex systems found in nature. From ant-inspired allocation to a swarm algorithm derived from honeybees, Bio-Inspired Computing and Networking explains how the study of biological systems can significantly improve computing, networki
How do 'minds' work? In 'Exploring Robotic Minds', Jun Tani answers this fundamental question by reviewing his own pioneering neurorobotics research project.
Through expanded intelligence, the use of robotics has fundamentally transformed a variety of fields, including manufacturing, aerospace, medicine, social services, and agriculture. Continued research on robotic design is critical to solving various dynamic obstacles individuals, enterprises, and humanity at large face on a daily basis. Robotic Systems: Concepts, Methodologies, Tools, and Applications is a vital reference source that delves into the current issues, methodologies, and trends relating to advanced robotic technology in the modern world. Highlighting a range of topics such as mechatronics, cybernetics, and human-computer interaction, this multi-volume book is ideally designed for robotics engineers, mechanical engineers, robotics technicians, operators, software engineers, designers, programmers, industry professionals, researchers, students, academicians, and computer practitioners seeking current research on developing innovative ideas for intelligent and autonomous robotics systems.
Studies on robotics applications have grown substantially in recent years, with swarm robotics being a relatively new area of research. Inspired by studies in swarm intelligence and robotics, swarm robotics facilitates interactions between robots as well as their interactions with the environment. The Handbook of Research on Design, Control, and Modeling of Swarm Robotics is a collection of the most important research achievements in swarm robotics thus far, covering the growing areas of design, control, and modeling of swarm robotics. This handbook serves as an essential resource for researchers, engineers, graduates, and senior undergraduates with interests in swarm robotics and its applications.