Download Free Bio Based And Biodegradable Plastics Book in PDF and EPUB Free Download. You can read online Bio Based And Biodegradable Plastics and write the review.

The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs
Providing guidelines for implementing sustainable practices for traditional petroleum based plastics, biobased plastics, and recycled plastics, Sustainable Plastics and the Environment explains what sustainable plastics are, why sustainable plastics are needed, which sustainable plastics to use, and how manufacturing companies can integrate them into their manufacturing operations. A vital resource for practitioners, scientists, researchers, and students, the text includes impacts of plastics including Life Cycle Assessments (LCA) and sustainability strategies related to biobased plastics and petroleum based plastics as well as end-of-life options for petroleum and biobased plastics.
Appendix includes formulas and procedures for making plastics.
This volume incorporates 13 contributions from renowned experts from the relevant research fields that are related biodegradable and biobased polymers and their environmental and biomedical applications. Specifically, the book highlights: Developments in polyhydroxyalkanoates applications in agriculture, biodegradable packaging material and biomedical field like drug delivery systems, implants, tissue engineering and scaffolds The synthesis and elaboration of cellulose microfibrils from sisal fibres for high performance engineering applications in various sectors such as the automotive and aerospace industries, or for building and construction The different classes and chemical modifications of tannins Electro-activity and applications of Jatropha latex and seed The synthesis, properties and applications of poly(lactic acid) The synthesis, processing and properties of poly(butylene succinate), its copolymers, composites and nanocomposites The different routes for preparation polymers from vegetable oil and the effects of reinforcement and nano-reinforcement on the physical properties of such biobased polymers The different types of modified drug delivery systems together with the concept of the drug delivery matrix for controlled release of drugs and for antitumor drugs The use of nanocellulose as sustainable adsorbents for the removal of water pollutants mainly heavy metal ions, organic molecules, dyes, oil and CO2 The main extraction techniques, structure, properties and different chemical modifications of lignins Proteins and nucleic acids based biopolymers The role of tamarind seed polysaccharide-based multiple-unit systems in sustained drug release
Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.
Over the few coming decades, bio-based and biodegradable plastics produced from sustainable bioresources should essentially substitute the prevalent synthetic plastics produced from exhaustible hydrocarbon fossils. To the greatest extend, this innovative trend has to apply to the packaging manufacturing area and especially to food packaging implementation. To supply the rapid production increment of biodegradable plastics, there must be provided the effective development of scientific-technical potential that promotes the comprehensive exploration of their structural, functional, and dynamic characteristics. In this regard, the transition from passive barrier materials preventing water and oxygen transport as well as bacteria infiltration to active functional packaging that ensures gas diffusion selectivity, antiseptics' and other modifiers' release should be based on the thorough study of biopolymer crystallinity, morphology, diffusivity, controlled biodegradability and life cycle assessment. This Special Issue accumulates the papers of international teams that devoted to scientific and industrial bases providing the biodegradable material development in the barrier and active packaging as well as in agricultural applications. We hope that book will bring great interest to the experts in the area of sustainable biopolymers.
“This eloquent, elegant book thoughtfully plumbs the . . . consequences of our dependence on plastics” (The Boston Globe, A Best Nonfiction Book of 2011). From pacemakers to disposable bags, plastic built the modern world. But a century into our love affair, we’re starting to realize it’s not such a healthy relationship. As journalist Susan Freinkel points out in this eye-opening book, we’re at a crisis point. Plastics draw on dwindling fossil fuels, leach harmful chemicals, litter landscapes, and destroy marine life. We’re drowning in the stuff, and we need to start making some hard choices. Freinkel tells her story through eight familiar plastic objects: a comb, a chair, a Frisbee, an IV bag, a disposable lighter, a grocery bag, a soda bottle, and a credit card. With a blend of lively anecdotes and analysis, she sifts through scientific studies and economic data, reporting from China and across the United States to assess the real impact of plastic on our lives. Her conclusion is severe, but not without hope. Plastic points the way toward a new creative partnership with the material we love, hate, and can’t seem to live without. “When you write about something so ubiquitous as plastic, you must be prepared to write in several modes, and Freinkel rises to this task. . . . She manages to render the most dull chemical reaction into vigorous, breathless sentences.” —SF Gate “Freinkel’s smart, well-written analysis of this love-hate relationship is likely to make plastic lovers take pause, plastic haters reluctantly realize its value, and all of us understand the importance of individual action, political will, and technological innovation in weaning us off our addiction to synthetics.” —Publishers Weekly “A compulsively interesting story. Buy it (with cash).” —Bill McKibben, author of The End of Nature “What a great read—rigorous, smart, inspiring, and as seductive as plastic itself.” —Karim Rashid, designer
This book provides the latest information on bioplastics and biodegradable plastics. The initial chapters introduce readers to the various sources and substrates for the synthesis of bioplastics and biodegradable plastics, and explain their general structure, physio-chemical properties and classification. In turn, the book discusses innovative methods for the production of bioplastics at the industrial level and for the microbial production of bioplastics. It highlights the processes that are involved in the conversion of agro-industrial waste into bioplastics, while also summarizing the mechanisms of biodegradation in bioplastics. The book addresses a range of biotechnological applications of bioplastics such as in agriculture, food packaging and pharmaceutical industry, as well as biomedical applications.
Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs