Download Free Binary Numbers Book in PDF and EPUB Free Download. You can read online Binary Numbers and write the review.

This book is directed toward readers seeking a concise introduction to binary numbers with an inclination toward understanding computer systems. The material presented can be used as a supplement for courses relevant to computer science and computer engineering anywhere from the high school level up to the college level. Several in-chapter and end-of-chapter exercises are included in order to ensure the interested reader is able to practice and fully internalize the topics presented. Depending upon the level of the reader and the rate at which the material is covered, the book topics can be mastered within a period of two to six weeks.
Introduces the principle and uses of binary numbers.
Elementary students around the globe are taught to count using a base-10 number system. We form numbers using the 10 digits of our base-10 system�zero through nine. Inside this book, readers discover other number systems people have used throughout history. With a binary system, computers only use two digits�0 and 1. So how does a computer count to 10? Readers will learn the answer inside this book. Also included is a review of hexadecimal numbers, which serve as the old basis of assembly languages and can still be found today setting colors on the web. This volume meets math standards addressing number systems other than base 10.
This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 2000-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an “all-in-one” binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.
Designed as a textbook for undergraduate students in Electrical Engineering, Electronics, Computer Science, and Information Technology, this up-to-date, well-organized study gives an exhaustive treatment of the basic principles of Digital Electronics and Logic Design. It aims at bridging the gap between these two subjects. The many years of teaching undergraduate and postgraduate students of engineering that Professor Somanathan Nair has done is reflected in the in-depth analysis and student-friendly approach of this book. Concepts are illustrated with the help of a large number of diagrams so that students can comprehend the subject with ease. Worked-out examples within the text illustrate the concepts discussed, and questions at the end of each chapter drill the students in self-study.
Designed to provide a comprehensive and practical insight to the basic concepts of Digital Electronics, this book brings together information on theory, operational aspects and practical applications of digital circuits in a succinct style that is suitable for undergraduate students. Spread across 16 chapters, the book walks the student through the first principles and the Karnaugh mapping reduction technique before proceeding to elaborate on the design and implementation of complex digital circuits. With ample examples and exercises to reinforce theory and an exclusive chapter allotted for electronic experiments, this textbook is an ideal classroom companion for students.
An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes the book.
Discrete Mathematics for Computer Science: An Example-Based Introduction is intended for a first- or second-year discrete mathematics course for computer science majors. It covers many important mathematical topics essential for future computer science majors, such as algorithms, number representations, logic, set theory, Boolean algebra, functions, combinatorics, algorithmic complexity, graphs, and trees. Features Designed to be especially useful for courses at the community-college level Ideal as a first- or second-year textbook for computer science majors, or as a general introduction to discrete mathematics Written to be accessible to those with a limited mathematics background, and to aid with the transition to abstract thinking Filled with over 200 worked examples, boxed for easy reference, and over 200 practice problems with answers Contains approximately 40 simple algorithms to aid students in becoming proficient with algorithm control structures and pseudocode Includes an appendix on basic circuit design which provides a real-world motivational example for computer science majors by drawing on multiple topics covered in the book to design a circuit that adds two eight-digit binary numbers Jon Pierre Fortney graduated from the University of Pennsylvania in 1996 with a BA in Mathematics and Actuarial Science and a BSE in Chemical Engineering. Prior to returning to graduate school, he worked as both an environmental engineer and as an actuarial analyst. He graduated from Arizona State University in 2008 with a PhD in Mathematics, specializing in Geometric Mechanics. Since 2012, he has worked at Zayed University in Dubai. This is his second mathematics textbook.
The Fourth edition of this well-received text continues to provide coherent and comprehensive coverage of digital circuits. It is designed for the undergraduate students pursuing courses in areas of engineering disciplines such as Electrical and Electronics, Electronics and Communication, Electronics and Instrumentation, Telecommunications, Medical Electronics, Computer Science and Engineering, Electronics, and Computers and Information Technology. It is also useful as a text for MCA, M.Sc. (Electronics) and M.Sc. (Computer Science) students. Appropriate for self study, the book is useful even for AMIE and grad IETE students. Written in a student-friendly style, the book provides an excellent introduction to digital concepts and basic design techniques of digital circuits. It discusses Boolean algebra concepts and their application to digital circuitry, and elaborates on both combinational and sequential circuits. It provides numerous fully worked-out, laboratory tested examples to give students a solid grounding in the related design concepts. It includes a number of short questions with answers, review questions, fill in the blanks with answers, multiple choice questions with answers and exercise problems at the end of each chapter.
This second edition of a GCSE computer studies text includes chapters on personal computers and desktop publishing, spreadsheets and their applications, and detailed case studies illustrating how a computer system can revolutionize the working environment. The Data Protection Act is also included, together with project work, an extended section on coursework, advice on how to revise and hints on how to pass examinations. Key words are explained in the text in context and highlighted with bold type, and also explained in an extensive glossary.