Download Free Big Data In Small Slices Book in PDF and EPUB Free Download. You can read online Big Data In Small Slices and write the review.

This book offers an engaging and accessible introduction to data visualization for communicators, covering everything from data collection and analysis to the creation of effective data visuals. Straying from the typical "how to visualize data" genre often written for technical audiences, Big Data in Small Slices offers those new to data gathering and visualization the opportunity to better understand data itself. Using the concept of the "data backstory," each chapter features discussions with experts, from marine scientists to pediatricians and city government officials, who produce datasets in their daily work. The reader is guided through the process of designing effective visualizations based on their data, delving into how datasets are produced and vetted, and how to assess their weaknesses and strengths, ultimately offering readers the knowledge needed to produce their own effective data visuals. This book is an invaluable resource for anyone interested in data visualization and storytelling, from journalism and communications students to public relations professionals. A detailed accompanying website features additional material for readers, including links to all the original datasets used in the text, at www.bigdatainsmallslices.com
This book offers an engaging and accessible introduction to data visualization for communicators, covering everything from data collection and analysis to the creation of effective data visuals. Straying from the typical "how to visualize data" genre often written for technical audiences, Big Data in Small Slices offers those new to data gathering and visualization the opportunity to better understand data itself. Using the concept of the "data backstory," each chapter features discussions with experts, from marine scientists to pediatricians and city government officials, who produce datasets in their daily work. The reader is guided through the process of designing effective visualizations based on their data, delving into how datasets are produced and vetted, and how to assess their weaknesses and strengths, ultimately offering readers the knowledge needed to produce their own effective data visuals. This book is an invaluable resource for anyone interested in data visualization and storytelling, from journalism and communications students to public relations professionals. A detailed accompanying website features additional material for readers, including links to all the original datasets used in the text, at www.bigdatainsmallslices.com
How a new understanding of warfare can help the military fight today’s conflicts more effectively The way wars are fought has changed starkly over the past sixty years. International military campaigns used to play out between large armies at central fronts. Today's conflicts find major powers facing rebel insurgencies that deploy elusive methods, from improvised explosives to terrorist attacks. Small Wars, Big Data presents a transformative understanding of these contemporary confrontations and how they should be fought. The authors show that a revolution in the study of conflict--enabled by vast data, rich qualitative evidence, and modern methods—yields new insights into terrorism, civil wars, and foreign interventions. Modern warfare is not about struggles over territory but over people; civilians—and the information they might choose to provide—can turn the tide at critical junctures. The authors draw practical lessons from the past two decades of conflict in locations ranging from Latin America and the Middle East to Central and Southeast Asia. Building an information-centric understanding of insurgencies, the authors examine the relationships between rebels, the government, and civilians. This approach serves as a springboard for exploring other aspects of modern conflict, including the suppression of rebel activity, the role of mobile communications networks, the links between aid and violence, and why conventional military methods might provide short-term success but undermine lasting peace. Ultimately the authors show how the stronger side can almost always win the villages, but why that does not guarantee winning the war. Small Wars, Big Data provides groundbreaking perspectives for how small wars can be better strategized and favorably won to the benefit of the local population.
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
Residents in Boston, Massachusetts are automatically reporting potholes and road hazards via their smartphones. Progressive Insurance tracks real-time customer driving patterns and uses that information to offer rates truly commensurate with individual safety. Google accurately predicts local flu outbreaks based upon thousands of user search queries. Amazon provides remarkably insightful, relevant, and timely product recommendations to its hundreds of millions of customers. Quantcast lets companies target precise audiences and key demographics throughout the Web. NASA runs contests via gamification site TopCoder, awarding prizes to those with the most innovative and cost-effective solutions to its problems. Explorys offers penetrating and previously unknown insights into healthcare behavior. How do these organizations and municipalities do it? Technology is certainly a big part, but in each case the answer lies deeper than that. Individuals at these organizations have realized that they don't have to be Nate Silver to reap massive benefits from today's new and emerging types of data. And each of these organizations has embraced Big Data, allowing them to make astute and otherwise impossible observations, actions, and predictions. It's time to start thinking big. In Too Big to Ignore, recognized technology expert and award-winning author Phil Simon explores an unassailably important trend: Big Data, the massive amounts, new types, and multifaceted sources of information streaming at us faster than ever. Never before have we seen data with the volume, velocity, and variety of today. Big Data is no temporary blip of fad. In fact, it is only going to intensify in the coming years, and its ramifications for the future of business are impossible to overstate. Too Big to Ignore explains why Big Data is a big deal. Simon provides commonsense, jargon-free advice for people and organizations looking to understand and leverage Big Data. Rife with case studies, examples, analysis, and quotes from real-world Big Data practitioners, the book is required reading for chief executives, company owners, industry leaders, and business professionals.
Leverage big data to add value to your business Social media analytics, web-tracking, and other technologies help companies acquire and handle massive amounts of data to better understand their customers, products, competition, and markets. Armed with the insights from big data, companies can improve customer experience and products, add value, and increase return on investment. The tricky part for busy IT professionals and executives is how to get this done, and that's where this practical book comes in. Big Data: Understanding How Data Powers Big Business is a complete how-to guide to leveraging big data to drive business value. Full of practical techniques, real-world examples, and hands-on exercises, this book explores the technologies involved, as well as how to find areas of the organization that can take full advantage of big data. Shows how to decompose current business strategies in order to link big data initiatives to the organization’s value creation processes Explores different value creation processes and models Explains issues surrounding operationalizing big data, including organizational structures, education challenges, and new big data-related roles Provides methodology worksheets and exercises so readers can apply techniques Includes real-world examples from a variety of organizations leveraging big data Big Data: Understanding How Data Powers Big Business is written by one of Big Data's preeminent experts, William Schmarzo. Don't miss his invaluable insights and advice.
Martin Lindstrom, a modern-day Sherlock Holmes, harnesses the power of “small data” in his quest to discover the next big thing Hired by the world's leading brands to find out what makes their customers tick, Martin Lindstrom spends 300 nights a year in strangers’ homes, carefully observing every detail in order to uncover their hidden desires, and, ultimately, the clues to a multi-million dollar product. Lindstrom connects the dots in this globetrotting narrative that will enthrall enterprising marketers, as well as anyone with a curiosity about the endless variations of human behavior. You’ll learn... • How a noise reduction headset at 35,000 feet led to the creation of Pepsi’s new trademarked signature sound. • How a worn down sneaker discovered in the home of an 11-year-old German boy led to LEGO’s incredible turnaround. • How a magnet found on a fridge in Siberia resulted in a U.S. supermarket revolution. • How a toy stuffed bear in a girl’s bedroom helped revolutionize a fashion retailer’s 1,000 stores in 20 different countries. • How an ordinary bracelet helped Jenny Craig increase customer loyalty by 159% in less than a year. • How the ergonomic layout of a car dashboard led to the redesign of the Roomba vacuum.
Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem
Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.