Download Free Big Data And Edge Intelligence For Enhanced Cyber Defense Book in PDF and EPUB Free Download. You can read online Big Data And Edge Intelligence For Enhanced Cyber Defense and write the review.

An unfortunate outcome of the growth of the Internet and mobile technologies has been the challenge of countering cybercrime. This book introduces and explains the latest trends and techniques of edge artificial intelligence (EdgeAI) intended to help cyber security experts design robust cyber defense systems (CDS), including host-based and network-based intrusion detection system and digital forensic intelligence. This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data, in addition to other basic information related to network security. In addition, it provides a brief overview of modern cyber security threats and outlines the advantages of using EdgeAI to counter these threats, as well as exploring various cyber defense mechanisms (CDM) based on detection type and approaches. Specific challenging areas pertaining to cyber defense through EdgeAI, such as improving digital forensic intelligence, proactive and adaptive defense of network infrastructure, and bio-inspired CDM, are also discussed. This book is intended as a reference for academics and students in the field of network and cybersecurity, particularly on the topics of intrusion detection systems, smart grid, EdgeAI, and bio-inspired cyber defense principles. The front-line EdgeAI techniques discussed will also be of use to cybersecurity engineers in their work enhancing cyber defense systems.
This book discusses the direct confluence of EdgeAI with big data, as well as demonstrating detailed reviews of recent cyber threats and their countermeasure. It provides computational intelligence techniques and automated reasoning models capable of fast training and timely data processing of cyber security big data.
As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.
Soft computing techniques are no longer limited to the arena of computer science. The discipline has an exponentially growing demand in other branches of science and engineering and even into health and social science. This book contains theory and applications of soft computing in engineering, health, and social and applied sciences. Different soft computing techniques such as artificial neural networks, fuzzy systems, evolutionary algorithms and hybrid systems are discussed. It also contains important chapters in machine learning and clustering. This book presents a survey of the existing knowledge and also the current state of art development through original new contributions from the researchers. This book may be used as a one-stop reference book for a broad range of readers worldwide interested in soft computing. In each chapter, the preliminaries have been presented first and then the advanced discussion takes place. Learners and researchers from a wide variety of backgrounds will find several useful tools and techniques to develop their soft computing skills. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in any branch of soft computing. The readers of this book will require minimum prerequisites of undergraduate studies in computation and mathematics.
This book examines the latest developments in the area of soft computing with engineering applications. It explores topics such as fuzzy sets, intuitionistic fuzzy sets, unmanned aerial vehicles, soft sets, neutrosophic sets, fractional calculus, big data analytics, and the mathematical foundations of convolutional neural network (CNNs). Soft Computing: Engineering Applications offers readers a comprehensive and in-depth understanding of various cutting-edge technologies that are transforming industries worldwide. The book explores soft computing techniques in a very systematic manner. It elucidates the concepts, theories, and applications of fuzzy sets, enabling readers to grasp the fundamentals and explore their applications in various fields. It provides new insight into unmanned aerial vehicle applications to fuzzy soft set based decision making. It then discusses new fixed point results in orthogonal neutrosophic generalized metric spaces and explores statistical convergence of triple sequences in a credibility space. The authors then provide readers with a solid grasp of the mathematical underpinnings of CNNs, enabling them to design, train, and optimize neural networks for image recognition, object detection, and other computer vision tasks. The authors also present new studies in fractional calculus and explores advanced visualization algorithms and techniques for big data analytics. Soft Computing will be useful for beginners and advanced researchers in engineering, applied sciences and healthcare professionals working in soft computing applications.
The purpose of this book is to discuss the trends and key drivers of Internet of Things (IoT) and artificial intelligence (AI) for automation in Industry 4.0. IoT and AI are transforming the industry thus accelerating efficiency and forging a more reliable automated enterprise. AI-driven IoT systems for Industry 4.0 explore current research to be carried out in the cutting-edge areas of AI for advanced analytics, integration of industrial IoT (IIoT) solutions and Edge components, automation in cyber-physical systems, world leading Industry 4.0 frameworks and adaptive supply chains, etc. A thorough exploration of Industry 4.0 is provided, focusing on the challenges of digital transformation and automation. It covers digital connectivity, sensors, and the integration of intelligent thinking and data science. Emphasizing the significance of AI, the chapter delves into optimal decision-making in Industry 4.0. It extensively examines automation and hybrid edge computing architecture, highlighting their applications. The narrative then shifts to IIoT and edge AI, exploring their convergence and the use of edge AI for visual insights in smart factories. The book concludes by discussing the role of AI in constructing digital twins, speeding up product development lifecycles, and offering insights for decision-making in smart factories. Throughout, the emphasis remains on the transformative impact of deep learning and AI in automating and accelerating manufacturing processes within the context of Industry 4.0. This book is intended for undergraduates, postgraduates, academicians, researchers, and industry professionals in industrial and computer engineering.
Computational Intelligence for Medical Internet of Things (MIoT) Applications: Machine Intelligence Applications for IoT in Healthcare explores machine intelligence techniques necessary for effective MIoT research and practice, taking a practical approach for practitioners and students entering the field. This book investigates advanced concepts and applications in the MIoT field, guiding readers through emerging developments and future trends. A wide range of international authors guide readers through advanced concepts, including deep learning, neural network, and big data analytic approaches for the classification, indexing, retrieval, analysis, and inferencing of healthcare data. - Presents the state-of-the-art in machine intelligence and related technologies and methodologies for IoT in healthcare - Discusses emerging developments and trends in machine intelligence for business and decision-making strategy in healthcare - Features new models, practical solutions, prototypes, frameworks and technological advances related to machine intelligence for MIoT applications
This book takes a unique approach by exploring the connection between cybersecurity, digitalization, and business intelligence. In today's digital landscape, cybersecurity is a crucial aspect of business operations. Meanwhile, organizations continue to leverage digital technologies for their day-to-day operations. They must be aware of the risks associated with cyber-attacks and implement robust cybersecurity measures to protect their assets. It provides practical insights and solutions to help businesses better understand the impact of cybersecurity on their digitalization and business intelligence strategies. It provides practical insights and solutions for implementing cybersecurity measures in organizations and covers a wide range of topics, including threat intelligence, risk management, compliance, cloud security, and IoT security. The book takes a holistic approach and explores the intersection of cybersecurity, digitalization, and business intelligence and examines the possible challenges and opportunities.
In the digital transformation era, integrating business intelligence and data analytics has become critical for the growth and sustainability of industrial organizations. However, with this technological evolution comes the pressing need for robust cybersecurity measures to safeguard valuable business intelligence from security threats. Strengthening Industrial Cybersecurity to Protect Business Intelligence delves into the theoretical foundations and empirical studies surrounding the intersection of business intelligence and cybersecurity within various industrial domains. This book addresses the importance of cybersecurity controls in mitigating financial losses and reputational damage caused by cyber-attacks. The content spans a spectrum of topics, including advances in business intelligence, the role of artificial intelligence in various business applications, and the integration of intelligent systems across industry 5.0. Ideal for academics in information systems, cybersecurity, and organizational science, as well as government officials and organizations, this book serves as a vital resource for understanding the intricate relationship between business intelligence and cybersecurity. It is equally beneficial for students seeking insights into the security implications of digital transformation processes for achieving business continuity.