Download Free Bifurcation Analysis In Geomechanics Book in PDF and EPUB Free Download. You can read online Bifurcation Analysis In Geomechanics and write the review.

This book examines the experimental and theoretical aspects of bifurcation analysis as applied to geomechanics. Coverage includes basic continuum mechanics for dry and fluid unfiltrated porous media, bifurcation and stability analyses applied to layered geological media and granular materials, and theories for generalized continua as applied to materials with microstructure and in relation to strain localization phenomena.
This work contains proceedings of a workshop on Bifurcation and Localisation Theory in Geomechanics, held in Perth, Australia in 1999. It covers a range of themes from classic civil engineering subjects to non-linear and non-unique geological phenomena.
A multidisciplinary field, encompassing both geophysics and civil engineering, geomechanics deals with the deformation and failure process in geomaterials such as soil and rock. Although powerful numerical tools have been developed, analytical solutions still play an important role in solving practical problems in this area. Analytic Methods in Geomechanics provides a much-needed text on mathematical theory in geomechanics, beneficial for readers of varied backgrounds entering this field. Written for scientists and engineers who have had some exposure to engineering mathematics and strength of materials, the text covers major topics in tensor analysis, 2-D elasticity, and 3-D elasticity, plasticity, fracture mechanics, and viscoelasticity. It also discusses the use of displacement functions in poroelasticity, the basics of wave propagations, and dynamics that are relevant to the modeling of geomaterials. The book presents both the fundamentals and more advanced content for understanding the latest research results and applying them to practical problems in geomechanics. The author gives concise explanations of each subject area, using a step-by-step process with many worked examples. He strikes a balance between breadth of material and depth of details, and includes recommended reading in each chapter for readers who would like additional technical information. This text is suitable for students at both undergraduate and graduate levels, as well as for professionals and researchers.
This book contains a sampling of papers presented at the June 2-5, 2002 International Workshop on Bifurcations andamp; Instabilities in Geomechanics (IWBI 2002). The scope of the Workshop includes analytical approaches, numerical methods, and experimental techniques.
This is an up-to-date review of developments in the field of bifurcations and instabilities in geomechanics from some of the world’s leading experts. Leading international researchers and practitioners of the topics debate the developments and applications which have occurred over the last few decades. Beside fundamental research findings, applications in geotechnical, petroleum, mining, and bulk materials engineering are emphasised.
This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927-2006), it can be of great use and interest to researchers and engineers alike. A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez's life-long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices. He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample. The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez's insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.
This book presents contributions to the 9th International Workshop on Bifurcation and Degradation in Geomaterials held in Porquerolles, France, May 23-26, 2011. This series of conferences, started in the early 1980s, is dedicated to the research on degradation and instability phenomena in geomaterials. The volume gathers a series of manuscripts by brilliant international scholars reflecting recent trends in theoretical and experimental research in geomechanics. It incorporates contributions on topics like instability analysis, localized and diffuse failure description, multi-scale modeling and applications to geo-environmental issues. This book will be valuable for anyone interested in the research on degradation and instabilities in geomechanics and geotechnical engineering, appealing to graduate students, researchers and engineers alike.
Instabilities Modeling in Geomechanics describes complex mechanisms which are frequently met in earthquake nucleation, geothermal energy production, nuclear waste disposal and CO2 sequestration. These mechanisms involve systems of non-linear differential equations that express the evolution of the geosystem (e.g. strain localization, temperature runaway, pore pressure build-up, etc.) at different length and time scales. In order to study the evolution of a system and possible instabilities, it is essential to know the mathematical properties of the governing equations. Therefore, questions of the existence, uniqueness and stability of solutions naturally arise. This book particularly explores bifurcation theory and stability analysis, which are robust and rigorous mathematical tools that allow us to study the behavior of complex geosystems, without even explicitly solving the governing equations. The contents are organized into 10 chapters which illustrate the application of these methods in various fields of geomechanics.
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
This book contains the scientific contributions to the 11th International Workshop on Bifurcation and Degradation in Geomaterials (IWBDG) held in Limassol-Cyprus, May 21-25, 2017. The IWBDG series have grown in size and scope, since their inception 30 years ago in Germany, covering more and wider areas of geomaterials and geomechanics research including modern trends. The papers cover a wide range of topics including advances in instabilities, localized and diffuse failure, micromechanical, multiscale phenomena, multiphysics modeling and other related topics. This volume gathers a series of manuscript by brilliant international scholars who work on modern recent advances in experimental, theoretical and numerical methods. The theoretical and applied mechanics are linked successfully with engineering applications in traditional and in emerging fields, such as geomechanics for the energy and the environment. The quality of the contributed papers has benefited from the peer review process by expert referees. This book can be used as a useful reference for research students, academics and practicing engineers who are interested in the instability and degradation problems in geomaterials, geomechanics, geotechnical engineering and other related applications.