Download Free Bibliography On Uses Of Radioactive And Stable Isotopes In Industry Book in PDF and EPUB Free Download. You can read online Bibliography On Uses Of Radioactive And Stable Isotopes In Industry and write the review.

This bibliography contains 455 references to articles from the open literature. An author index and literature reference source are also included.
Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.
After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government’s efforts to harness the power of the atom for peace—advancing medicine, domestic energy, and foreign relations. In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecology. Government-produced radioisotopes provided physicians with new tools for diagnosis and therapy, specifically cancer therapy, and enabled biologists to trace molecular transformations. Yet the government’s attempt to present radioisotopes as marvelous dividends of the atomic age was undercut in the 1950s by the fallout debates, as scientists and citizens recognized the hazards of low-level radiation. Creager reveals that growing consciousness of the danger of radioactivity did not reduce the demand for radioisotopes at hospitals and laboratories, but it did change their popular representation from a therapeutic agent to an environmental poison. She then demonstrates how, by the late twentieth century, public fear of radioactivity overshadowed any appreciation of the positive consequences of the AEC’s provision of radioisotopes for research and medicine.
This publication is the first international survey on the beneficial uses and production of isotopes. It provides an overview of their main uses, and detailed information on the facilities that produce them world-wide.
This Very Short Introduction is an exciting and non-traditional approach to understanding the terminology, properties, and classification of chemical elements. It traces the history and cultural impact of the elements on humankind from ancient times through today. Packed with anecdotes, The Elements is a highly engaging and entertaining exploration of the fundamental question: what is the world made from?
This report explores the main reasons behind the unreliable supply of Technetium-99m (Tc-99m) in health-care systems and policy options to address the issue. Tc-99m is used in 85% of nuclear medicine diagnostic scans performed worldwide – around 30 million patient examinations every year. These scans allow diagnoses of diseases in many parts of the human body, including the skeleton, heart and circulatory system, and the brain. Medical isotopes are subject to radioactive decay and have to be delivered just-in-time through a complex supply chain. However, ageing production facilities and a lack of investment have made the supply of Tc-99m unreliable. This report analyses the use and substitutability of Tc-99m in health care, health-care provider payment mechanisms for scans, and the structure of the supply chain. It concludes that the main reasons for unreliable supply are that production is not economically viable and that the structure of the supply chain prevents producers from charging prices that reflect the full costs of production and supply.
An accessible overview of radiogenic isotopes, dataset evaluation and real-world applications for advanced undergraduate students and industry professionals.