Download Free Biaxial Testing For Fabrics And Foils Book in PDF and EPUB Free Download. You can read online Biaxial Testing For Fabrics And Foils and write the review.

This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.
Fluoropolymers are unique materials. Since the middle of the twentieth century fluropolymers have been used in applications where a wide temperature range, a high resistance to aggressive media, excellent tribological characteristics, and specific low adhesion are required. Today, researchers turn to fluoropolymers to solve new challenges and to develop materials with previously unattainable properties. Fascinating Fluoropolymers and Their Applications covers recent developments of fluoropolymer applications in energy, optical fibers, blood substitutes, textile coatings, membranes and other areas, written by experts in these fields. This volume in the Progress in Fluorine Science series is ideal for researchers and engineers who want to learn about the technology and applications of these special polymers, as well as industrial manufacturers who are interested in achieving new product characteristics in their respective industries. - Written by a global team of fluoropolymer experts - Includes use of fluoropolymer membranes for various applications in fuel cells, for gases separation, and more - Covers fluoropolymer materials with shape memory, in cardiopulmonary bypass systems, in the production of textile materials, and in other areas
Tensile surface structures are the visual expression of an intensive rethinking of the topic of building envelopes by designers. Advances in design methods, materials, construction elements and assembly and erection planning in the field of lightweight construction are enabling ever more exacting applications of tensile structures with envelope and structural functions, especially in roofing over large clear spans without internal support. However, the particular mechanical characteristics of the materials used in the construction of textile structures demand consideration of the question of "buildability". This book provides answers by discussing the fundamental influence of material manufacture and assembly in deciding the most suitable type of building or structure and its detailing in the design process. The fundamentals of material composition, manufacturing process, patterning and the behaviour of flexible structural systems are all explained here, as well as their use as structural and connection elements, and special attention is given to the erection of wide-span lightweight structures. The erection equipment is described, as well as the lifting and tensioning process and the construction methods used to erect the characteristic types of tensile structures, illustrated with a selection of example projects.
Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues covers the domain of theoretical, experimental and computational mechanics as well as interdisciplinary issues, such as industrial applications. Special attention is paid to the theoretical background and practical applications of computational mechanics.This volume
Provides structural engineers with the knowledge and practical tools needed to perform structural designs for wind that incorporate major technological, conceptual, analytical and computational advances achieved in the last two decades. With clear explanations and documentation of the concepts, methods, algorithms, and software available for accounting for wind loads in structural design, it also describes the wind engineer's contributions in sufficient detail that they can be effectively scrutinized by the structural engineer in charge of the design. Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is organized in four sections. The first covers atmospheric flows, extreme wind speeds, and bluff body aerodynamics. The second examines the design of buildings, and includes chapters on aerodynamic loads; dynamic and effective wind-induced loads; wind effects with specified MRIs; low-rise buildings; tall buildings; and more. The third part is devoted to aeroelastic effects, and covers both fundamentals and applications. The last part considers other structures and special topics such as trussed frameworks; offshore structures; and tornado effects. Offering readers the knowledge and practical tools needed to develop structural designs for wind loadings, this book: Points out significant limitations in the design of buildings based on such techniques as the high-frequency force balance Discusses powerful algorithms, tools, and software needed for the effective design for wind, and provides numerous examples of application Discusses techniques applicable to structures other than buildings, including stacks and suspended-span bridges Features several appendices on Elements of Probability and Statistics; Peaks-over-Threshold Poisson-Process Procedure for Estimating Peaks; estimates of the WTC Towers’ Response to Wind and their shortcomings; and more Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is an excellent text for structural engineers, wind engineers, and structural engineering students and faculty.
Whether it be as translucent sheets, broadly stretched membranes, and inflated foil cushions or in graceful, organic curves, architecture today is utilizing plastics in the most disparate forms and for a wide variety of purposes. Innovative technical developments are constantly improving its material properties; at the same time, there is a growing new awareness of its potential as a construction material. While plastics used to be employed primarily as an inexpensive variant on traditional building materials, they are increasingly regarded in the construction world today as a serious and viable alternative, be it as supporting structures, roofs, facades, or elements of interior design and decoration. Thanks in large part to this inherent self-sufficiency, plastics are currently enjoying an unprecedented surge in popularity, even among the international architectural avant-garde – as multiwall sheets or corrugated, fiber-reinforced panels, or as filling between glass panes. And the new generation of ecological bioplastics also pays tribute to the debate on sustainability, ridding plastics of their lingering reputation as environmental offenders. From the history of plastics and membranes in architecture to their material properties and requirements in construction and design, the Plastics and Membranes Construction Manual cuts to the chase, providing the kind of solid and comprehensive overview of the subject that readers have come to expect from the Im DETAIL series. Selected project examples round off the reference work and make it indispensable for the day-to-day life of the professional planner and for every architecture library.
Natural Fiber Textile Composite Engineering sheds light on the area of the natural fiber textile composites with new research on their applications, the material used, the methods of preparation, the different types of polymers, the selection of raw materials, the elements of design the natural fiber textile polymer composites for a particular end use, their manufacturing techniques, and finally their life cycle assessments (LCA). The volume also addresses the important issue in the materials science of how to utilize natural fibers as an enhancement to composite materials. Natural fiber-reinforced polymer composites have been proven to provide a combination of superior mechanical property, dielectric property, and environmental advantages such as renewability and biodegradability. Natural fibers, some from agricultural waste products, can replace existing metallic and plastic parts and help to alleviate the environmental problem of increasing amounts of agriculture residual. The book is divided into four sections, covering: applications of natural fiber polymer composites design of natural fiber polymer composites composite manufacturing techniques and agriculture waste manufacturing composite material testing methods The first section of the book deals with the application of textile composites in the industry and the properties of the natural fibers, providing an understanding of the history of natural fiber composites as well as an analysis of the different properties of different natural fibers. The second section goes on to explain the textile composites, their classification, different composite manufacturing techniques, and the different pretreatment methods for the natural fibers to be used in composite formation. It also analyzes the composite material design under different types of loading and the mechanism of failure of the natural fiber composite. The effect of the fiber volume fraction of different textile structures is explained. The third section of the book, on composite manufacturing techniques and agriculture waste manufacturing, concerns the natural fiber composite manufacturing techniques, agricultural waste, and the methods of their preparation to be used successfully in the composite, either in the form of fibers particles or nanoparticles. The book then considers the testing methods of the different composite components as well as the final composite materials, giving the principle of the testing standards, either distractive or nondestructive. This book attempts to fill the gap between the role of the textile engineer and the role of the designer of composites from natural fibers. It provides important information on the application of textile composites for textile engineers, materials engineers, and researchers in the area of composite materials.
Textiles, polymers and composites are increasingly being utilised within the building industry. This pioneering text provides a concise and representative overview of the opportunities available for textile, polymer and composite fibres to be used in construction and architecture.The first set of chapters examine the main types and properties of textiles, polymers and composites used in buildings. Key topics include the types and production of textiles, the use of polymer foils and fibre reinforced polymer composites as well as textiles and coatings for tensioned membrane structures. The second part of the book presents a selection of applications within the building industry. Chapters range from the use of textiles in tensile structures, sustainable building concepts with textile materials, innovative composite-fibre applications for architecture, to smart textile and polymer fibres for structural health monitoring.With its distinguished editor and team of international contributors, Textiles, polymers and composites for buildings is an important reference for architects, fabric manufacturers, fibre-composite experts, civil engineers, building designers, academics and students. - Provides a concise and representative overview of the opportunities available for textile, polymer and composite fibres to be used in construction - Provides an insight into how high-tech textiles already influence our daily lives as well as potential applications in modern buildings - Features a thorough discussion of technical characteristics and requirements of textiles used for buildings and construction
Advanced Structural Textile Composites Forming: Characterization, Modeling, and Simulation comprehensively describes the influence of fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization, covering the latest advances in the composites forming field. Part one reviews textile reinforcement architectures and discusses the forming behaviors of important 2D and 3D fabrics. Part two discusses numerical models to conduct simulation analysis of different structural composites forming at mesoscopic and macroscopic scales, in particular, 3D preforms with through-the-thickness yarns. Part three looks at the latest developments in the relationship between forming and other steps in composite manufacturing, such as resin injection, and automated fiber placement (AFP) and the effects on certain mechanical properties, such as structural damage and impact resistance. The book will be an essential reference for academic researchers, industrial engineers and materials scientists working with the manufacture and design of fiber-reinforced composite materials. - Describes the influence of the fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization - Provides numerical modeling and simulation of different fiber-reinforced composites forming at mesoscopic and macroscopic scales, in particular, reinforcements with discontinue fibers, and 3D preforms with through-the-thickness yarns - Discusses cutting edge topics such as resin injection, and automated fiber placement (AFP) and the effects of forming results on mechanical properties such as structural damage and impact resistances