Download Free Beyond Mechanism Book in PDF and EPUB Free Download. You can read online Beyond Mechanism and write the review.

It has been said that new discoveries and developments in the human, social, and natural sciences hang "in the air" (Bowler, 1983; 2008) prior to their consummation. While neo-Darwinist biology has been powerfully served by its mechanistic metaphysic and a reductionist methodology in which living organisms are considered machines, many of the chapters in this volume place this paradigm into question. Pairing scientists and philosophers together, this volume explores what might be termed "the New Frontiers" of biology, namely contemporary areas of research that appear to call an updating, a supplementation, or a relaxation of some of the main tenets of the Modern Synthesis. Such areas of investigation include: Emergence Theory, Systems Biology, Biosemiotics, Homeostasis, Symbiogenesis, Niche Construction, the Theory of Organic Selection (also known as "the Baldwin Effect"), Self-Organization and Teleodynamics, as well as Epigenetics. Most of the chapters in this book offer critical reflections on the neo-Darwinist outlook and work to promote a novel synthesis that is open to a greater degree of inclusivity as well as to a more holistic orientation in the biological sciences.
olymerases are the nucleotidyl transferases that are responsible for synthesizing DNA and RNA. They are crucial for essential cellular processes including cellular and viral genome replication, DNA repair and damage tolerance, and transcription. Consistent with their vital roles, polymerases are found in all domains of life. The overall chemistry employed by these enzymes is conserved but there are variations among the different groups of polymerases that confer different substrate specificities and nucleotide incorporation fidelities that allow them to be involved in a wide array of cellular activities. Since polymerases were first isolated more than six decades ago, we have made great progress in understanding how different polymerases have adapted to their specific roles. In this Research Topic we will focus on the enzymatic mechanisms of these enzymes and the relationships between polymerase structure and mechanism, to highlight common themes and unique adaptations.
Type I chaperonins are key players in maintaining the proteome of bacteria and organelles of bacterial origin. They are well known for their crucial role in mediating protein folding. For almost three decades, the molecular mechanism of chaperonin function has been the subject of intensive research. Still, surprising new mechanistic discoveries are constantly reported. It seems that we are far from having a full understanding of the chaperonin mode of action. Chaperonins are not simply protein folding machines. They also perform diverse extramitochondrial tasks, mainly related to inflammatory and signal transduction processes. This eBook constitutes ten articles highlighting the latest developments related to the divers functions of Type I chaperonins. As its title, mechanism and beyond, the collection starts with mechanistic view, continues with extracellular functions and ends with biotechnological applications of Type I chaperonins.
It has been said that new discoveries and developments in the human, social, and natural sciences hang “in the air” (Bowler, 1983; 2008) prior to their consummation. While neo-Darwinist biology has been powerfully served by its mechanistic metaphysic and a reductionist methodology in which living organisms are considered machines, many of the chapters in this volume place this paradigm into question. Pairing scientists and philosophers together, this volume explores what might be termed “the New Frontiers” of biology, namely contemporary areas of research that appear to call an updating, a supplementation, or a relaxation of some of the main tenets of the Modern Synthesis. Such areas of investigation include: Emergence Theory, Systems Biology, Biosemiotics, Homeostasis, Symbiogenesis, Niche Construction, the Theory of Organic Selection (also known as “the Baldwin Effect”), Self-Organization and Teleodynamics, as well as Epigenetics. Most of the chapters in this book offer critical reflections on the neo-Darwinist outlook and work to promote a novel synthesis that is open to a greater degree of inclusivity as well as to a more holistic orientation in the biological sciences.
This book invites readers to embark on a journey into the world of agency encompassing humans, other organisms, cells, intracellular molecular agents, colonies, populations, ecological systems, and artificial autonomous systems. We combine mechanistic and non-mechanistic approaches in the analysis of the function and evolution of organisms, their subagents, and multi-organism systems, and in this way offer a theoretical platform for integrating biosemiotics with both natural science and the humanities/social sciences. Agents are autonomous systems that incorporate knowledge on how to make sense of their environment and use it to achieve their goals. The functions of all agents are supported by mechanisms at the lowest level; however, the explanatory power of mechanistic analysis is not sufficient for complex agents. Non-mechanistic methods rely on the goal-directedness of agents whose dynamics follow self-stabilized dynamic attractors. The properties of attractors depend on stable or slowly changing factors, and such dependencies can be interpreted as sign relations if they are adaptive in nature. Agents can replace or redirect mechanisms on demand in order to preserve their functions; for performing higher-level semiotic functions, mechanisms are thus only means. We assume that mechanism and semiosis are not mutually exclusive, and that simple agents can interpret signs mechanistically. This assumption allows us to extend semiotic analysis to all agents, including ribosomes in cells, computers, and robots. This book challenges established traditions in natural science and the humanities/social sciences: semiotics no longer appears as restricted to humans and rational thinking, and biology is no longer limited to rely exclusively on mechanistic reasoning.
The mechanical philosophy first emerged as a leading player on the intellectual scene in the early modern period—seeking to explain all natural phenomena through the physics of matter and motion—and the term mechanism was coined. Over time, natural phenomena came to be understood through machine analogies and explanations and the very word mechanism, a suggestive and ambiguous expression, took on a host of different meanings. Emphasizing the important role of key ancient and early modern protagonists, from Galen to Robert Boyle, this book offers a historical investigation of the term mechanism from the late Renaissance to the end of the seventeenth century, at a time when it was used rather frequently in complex debates about the nature of the notion of the soul. In this rich and detailed study, Domenico Bertoloni Melifocuses on strategies for discussing the notion of mechanism in historically sensitive ways; the relation between mechanism, visual representation, and anatomy; the usage and meaning of the term in early modern times; and Marcello Malpighi and the problems of fecundation and generation, among the most challenging topics to investigate from a mechanistic standpoint.
The most recent LEP data is included in the lectures. The subjects include Higgs physics, KM angles, weak CP violation, neutron electric dipole moment, SUSY phenomenology, radiative corrections, and e+e- experiments.
This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing numbers of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights. The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism. This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers. The selected examples impressively demonstrate how the combination of functional analysis, crystallography, investigation of dynamics and computational studies has made it possible to create a conclusive picture or more precisely, “a molecular movie”. Although we are still far from a complete molecular description of the alternating access mechanism, remarkable progress has been made from static snapshots towards membrane transport dynamics.