Download Free Beyond Equilibrium Theory Book in PDF and EPUB Free Download. You can read online Beyond Equilibrium Theory and write the review.

Beyond Equilibrium Theory is a fundamentally new interpretation of social reality that introduces theories of social formation and transformation, for micro- and macro-analysis of action systems and social movements. Equilibrium and conflict are viewed as societal variants rather than as ideal or natural states. Classical theorists are placed within a common theoretical framework, in an analysis of social order and social change as separate continua. Multiple path models trace changing patterns of partnering and power sharing. Hypotheses are tested with field-collected survey data, regression analysis of higher-order interactions, and comparisons of means adjusted for other effects. Researchers are provided with detailed methods of integrating theory and research, including nonlinear models and new logics of causality.
Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.
The concept of general equilibrium, one of the central components of economic theory, explains the behavior of supply, demand, and prices by showing that supply and demand exist in balance through pricing mechanisms. The mathematical tools and properties for this theory have developed over time to accommodate and incorporate developments in economic theory, from multiple markets and economic agents to theories of production. Yves Balasko offers an extensive, up-to-date look at the standard theory of general equilibrium, to which he has been a major contributor. This book explains how the equilibrium manifold approach can be usefully applied to the general equilibrium model, from basic consumer theory and exchange economies to models with private ownership of production. Balasko examines properties of the standard general equilibrium model that are beyond traditional existence and optimality. He applies the theory of smooth manifolds and mappings to the multiplicity of equilibrium solutions and related discontinuities of market prices. The economic concepts and differential topology methods presented in this book are accessible, clear, and relevant, and no prior knowledge of economic theory is necessary. General Equilibrium Theory of Value offers a comprehensive foundation for the most current models of economic theory and is ideally suited for graduate economics students, advanced undergraduates in mathematics, and researchers in the field.
This textbook for master programs in economics offers a comprehensive overview of microeconomics. It employs a carefully graded approach where basic game theory concepts are already explained within the simpler decision framework. The unavoidable mathematical content is supplied when needed, not in an appendix. The book covers a lot of ground, from decision theory to game theory, from bargaining to auction theory, from household theory to oligopoly theory, and from the theory of general equilibrium to regulation theory. Additionally, cooperative game theory is introduced. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
This book provides a pedagogical introduction to the theoretical and computer simulation techniques that are useful in the design of polymer formulations including personal care products, multiphase plastic materials, processed foods, and colloidal and nanoparticle dispersions. The book serves to unify previous work in a common language and provides a balanced treatment of analytical theory and numerical techniques, including an introduction to the exciting new field offield-theoretic polymer simulations - the direct numerical simulation of field theory models of meso-structured polymer melts, solutions, and dispersions.
This book discusses in depth many of the key problems in non-equilibrium physics. The origin of macroscopic irreversible behavior receives particular attention and is illustrated in the framework of solvable models. An updated discussion on the linear response focuses on the correct electrodynamic aspects, which are essential for example, in the proof of the Nyquist theorem. The material covers the scaling relationship between different levels of description (kinetic to hydrodynamic) as well as spontaneous symmetry breaking in real time in terms of nonlinear dynamics (attractors), illustrated using the example of Bose-Einstein condensation. The presentation also includes the latest developments ? quantum kinetics ? related to modern ultrafast spectroscopy, where transition from reversible to irreversible behavior occurs.
Written by one of the key pioneers in the field, this book offers an accessible introduction to general equilibrium theory. Written for undergraduates taking courses in economic theory and modelling who have limited mathematical proficiency, the book fills a gap between forbidding technical expositions and the less rigorous elementary ones.
Macroeconomics is evolving in an almost dialectic fashion. The latest evolution is the development of a new synthesis that combines insights of new classical, new Keynesian and real business cycle traditions into a dynamic, stochastic general equilibrium (DSGE) model that serves as a foundation for thinking about macro policy. That new synthesis has opened up the door to a new antithesis, which is being driven by advances in computing power and analytic techniques. This new synthesis is coalescing around developments in complexity theory, automated general to specific econometric modeling, agent-based models, and non-linear and statistical dynamical models. This book thus provides the reader with an introduction to what might be called a Post Walrasian research program that is developing as the antithesis of the Walrasian DSGE synthesis.
Entropy Beyond the Second Law presents a coherent formulation of all aspects of thermodynamics and statistical mechanics with entropy as the unifying theme. This second edition includes the novel entropic treatment of Bose-Einstein condensation, superfluidity, and high temperature superconductivity. The new physical insights and the quantitative agreement with experimental measurement provide concrete examples of the universal approach based on entropy advocated in the book. Thermodynamics and statistical mechanics are important subjects, and students, academics, and researchers require the fundamental concepts to be clearly and concisely presented, as part of a unified whole, and the mathematical derivations to be explained with detailed physical explanation and applications.
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, evolutionary biology and technology, fluid turbulence, microbial biogeochemistry, plasma physics, and radiative transport, using a wide variety of analytical and experimental techniques. Beyond The Second Law will appeal to students and researchers wishing to gain an understanding of entropy production and its central place in the science of non-equilibrium systems – both in detail and in terms of the bigger picture.