Download Free Bessel Functions Book in PDF and EPUB Free Download. You can read online Bessel Functions and write the review.

Self-contained text, useful for classroom or independent study, covers Bessel functions of zero order, modified Bessel functions, definite integrals, asymptotic expansions, and Bessel functions of any real order. 226 problems.
Bessel functions are associated with a wide range of problems in important areas of mathematical physics. Bessel function theory is applied to problems of acoustics, radio physics, hydrodynamics, and atomic and nuclear physics. Bessel Functions and Their Applications consists of two parts. In Part One, the author presents a clear and rigorous intro
A massive compendium of useful information, this volume represents a valuable tool for applied mathematicians in many areas of academia and industry. A dozen useful tables supplement the text. 1962 edition.
An extensive summary of mathematical functions that occur in physical and engineering problems
Nearly 200 problems, each with a detailed, worked-out solution, deal with the properties and applications of the gamma and beta functions, Legendre polynomials, and Bessel functions. 1971 edition.
This book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schlömilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier–Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics.
This volume studies the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. It presents interesting geometric properties and functional inequalities for these generalized functions.
Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.